1
|
Duvenhage J, Kahts M, Summers B, Zeevaart JR, Ebenhan T. Highlighting New Research Trends on Zirconium-89 Radiopharmaceuticals Beyond Antibodies. Semin Nucl Med 2024:S0001-2998(24)00088-6. [PMID: 39462691 DOI: 10.1053/j.semnuclmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Zirconium-89 (89Zr) is a cyclotron-produced positron-emitting radioisotope with a half-life of 3.27 days, which makes delayed or longitudinal imaging possible. It is a superior isotope for tracking particles over several days at a high sensitivity, resolution, and specificity. 89Zr-monoclonal antibodies (89Zr-mAb) have gained significant attention in the field of molecular imaging. However, the past decade has shown an avid increase in research concerning 89Zr-radiopharmaceuticals apart from 89Zr-mAb. In this article we highlight and discuss the status and challenges attributed to current preclinical and clinical investigations of 89Zr-radiopharmaceuticals developed beyond 89Zr-mAb, e.g., mAb-derived variants and macro-biomolecules, proteins, peptides, nanoparticles, and living cells.
Collapse
Affiliation(s)
- Janie Duvenhage
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Maryke Kahts
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Beverley Summers
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Jan Rijn Zeevaart
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Isakova AA, Artykov AA, Plotnikova EA, Trunova GV, Khokhlova VА, Pankratov AA, Shuvalova ML, Mazur DV, Antipova NV, Shakhparonov MI, Dolgikh DA, Kirpichnikov MP, Gasparian ME, Yagolovich AV. Dual targeting of DR5 and VEGFR2 molecular pathways by multivalent fusion protein significantly suppresses tumor growth and angiogenesis. Int J Biol Macromol 2024; 255:128096. [PMID: 37972835 DOI: 10.1016/j.ijbiomac.2023.128096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Destroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance. For dual targeting of malignant cells and tumor vascular microenvironment, we designed a multivalent fusion protein SRH-DR5-B-iRGD with antiangiogenic VEGFR2-specific peptide SRH at the N-terminus and a tumor-targeting and -penetrating peptide iRGD at the C-terminus of receptor-selective TRAIL variant DR5-B. SRH-DR5-B-iRGD obtained high affinity for DR5, VEGFR2 and αvβ3 integrin in nanomolar range. Fusion of DR5-B with effector peptides accelerated DR5 receptor internalization rate upon ligand binding. Antitumor efficacy was evaluated in vitro in human tumor cell lines and primary patient-derived glioblastoma neurospheres, and in vivo in xenograft mouse model of human glioblastoma. Multivalent binding of SRH-DR5-B-iRGD fusion efficiently stimulated DR5-mediated tumor cell death via caspase-dependent mechanism, suppressed xenograft tumor growth by >80 %, doubled the lifespan of xenograft animals, and inhibited tumor vascularization. Therefore, targeting DR5 and VEGFR2 molecular pathways with SRH-DR5-B-iRGD protein may provide a novel therapeutic approach for treatment of solid tumors.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Artem A Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ekaterina A Plotnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Galina V Trunova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Varvara А Khokhlova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A Pankratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Margarita L Shuvalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| | - Anne V Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| |
Collapse
|
3
|
Lv X, Song X, Long Y, Zeng D, Lan X, Gai Y. Preclinical evaluation of a dual-receptor targeted tracer [ 68Ga]Ga-HX01 in 10 different subcutaneous and orthotopic tumor models. Eur J Nucl Med Mol Imaging 2023; 51:54-67. [PMID: 37642706 DOI: 10.1007/s00259-023-06412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE The integrin αvβ3 and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αvβ3 and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αvβ3 and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with 68Ga, in 10 different subcutaneous and orthotopic tumor models. METHODS The specific activity and radiochemical purity of [68Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [68Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [18F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images. RESULTS [68Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7-1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [68Ga]Ga-HX01 were higher than that of [18F]FDG. CONCLUSIONS [68Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [18F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.
Collapse
Affiliation(s)
- Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
4
|
Qin S, Yang Y, Zhang J, Yin Y, Liu W, Zhang H, Fan X, Yang M, Yu F. Effective Treatment of SSTR2-Positive Small Cell Lung Cancer Using 211At-Containing Targeted α-Particle Therapy Agent Which Promotes Endogenous Antitumor Immune Response. Mol Pharm 2023; 20:5543-5553. [PMID: 37788300 PMCID: PMC10630944 DOI: 10.1021/acs.molpharmaceut.3c00427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor with a high degree of malignancy. Due to limited treatment options, patients with SCLC have a poor prognosis. We have found, however, that intravenously administered octreotide (Oct) armed with astatine-211 ([211At]SAB-Oct) is effective against a somatostatin receptor 2 (SSTR2)-positive SCLC tumor in SCLC tumor-bearing BALB/c nude mice. In biodistribution analysis, [211At]SAB-Oct achieved the highest concentration in the SCLC tumors up to 3 h after injection as time proceeded. A single intravenous injection of [211At]SAB-Oct (370 kBq) was sufficient to suppress SSTR2-positive SCLC tumor growth in treated mice by inducing DNA double-strand breaks. Additionally, a multitreatment course (370 kBq followed by twice doses of 370 kBq for a total of 1110 kBq) inhibited the growth of the tumor compared to the untreated control group without significant off-target toxicity. Surprisingly, we found that [211At]SAB-Oct could up-regulate the expressions of calreticulin and major histocompatibility complex I (MHC-I) on the tumor cell membrane surface, suggesting that α-particle internal irradiation may activate an endogenous antitumor immune response through the regulation of immune cells in the tumor microenvironment, which could synergically enhance the efficacy of immunotherapy. We conclude that [211At]SAB-Oct is a potential new therapeutic option for SSTR2-positive SCLC.
Collapse
Affiliation(s)
- Shanshan Qin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuanyou Yang
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Jiajia Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuzhen Yin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Weihao Liu
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Han Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Xin Fan
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Mengdie Yang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Fei Yu
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| |
Collapse
|
5
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
6
|
Mostafa AMA, Zakaly HMH, Issa SAM, Uosif MAM, Alrowaili ZA, Zhukovsky MV. Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation. Biomedicines 2023; 11:biomedicines11041173. [PMID: 37189792 DOI: 10.3390/biomedicines11041173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
This study highlights the use of 89Zr-oxalate in diagnostic applications with the help of WinAct and IDAC2.1 software. It presents the biodistribution of the drug in various organs and tissues, including bone, blood, muscle, liver, lung, spleen, kidneys, inflammations, and tumors, and analyzes the maximum amount of nuclear transformation per Bq intake for each organ. The retention time of the maximum nuclear transformation and the absorbed doses of the drug in various organs and tissues are also examined. Data from clinical and laboratory studies on radiopharmaceuticals are used to estimate the coefficients of transition. The accumulation and excretion of the radiopharmaceutical in the organs is assumed to follow an exponential law. The coefficients of transition from the organs to the blood and vice versa are estimated using a combination of statistical programs and digitized data from the literature. WinAct and IDAC 2.1 software are used to calculate the distribution of the radiopharmaceutical in the human body and to estimate the absorbed doses in organs and tissues. The results of this study can provide valuable information for the biokinetic modeling of wide-spectrum diagnostic radiopharmaceuticals. The results show that 89Zr-oxalate has a high affinity for bones and a relatively low impact on healthy organs, making it helpful in targeting bone metastases. This study provides valuable information for further research on the development of this drug for potential clinical applications.
Collapse
Affiliation(s)
- Ahmed M A Mostafa
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham M H Zakaly
- Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Shams A M Issa
- Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | - Mohamed A M Uosif
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ziyad A Alrowaili
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | | |
Collapse
|
7
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|