1
|
Min F, Dong Z, Zhong S, Li Z, Wu H, Zhang S, Zhang L, Zeng T. Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination. CNS Neurosci Ther 2025; 31:e70191. [PMID: 39764629 PMCID: PMC11705406 DOI: 10.1111/cns.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy. METHODS Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models. RESULTS Neuronal cells in epilepsy patients exhibited significant gene expression alterations, with increased activity in apoptosis-related pathways and decreased activity in neurotransmitter-related pathways. LITAF was identified as a key upregulated factor, inhibiting mitochondrial autophagy by promoting MCL-1 ubiquitination, leading to increased neuronal damage. Knockdown experiments in mouse models further confirmed that LITAF facilitates MCL-1 ubiquitination, aggravating neuronal injury. CONCLUSION Our findings demonstrate that LITAF regulates MCL-1 ubiquitination, significantly impacting mitochondrial autophagy and contributing to neuronal damage in epilepsy. Targeting LITAF and its downstream mechanisms may offer a promising therapeutic strategy for managing epilepsy.
Collapse
Affiliation(s)
- Fuli Min
- Department of Neurology, School of Medicine, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Zhaofei Dong
- Department of Neurology, the Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Shuisheng Zhong
- Department of NeurologyGuangdong Sanjiu Brain HospitalGuangzhouChina
| | - Ze Li
- Department of Neurology, School of Medicine, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Hong Wu
- Department of Neurology, School of Medicine, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Sai Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Linming Zhang
- Department of NeurologyThe First Affliated Hospital of Kunming Medical UniversityKunmingChina
| | - Tao Zeng
- Department of Neurology, School of Medicine, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
- Department of Neurology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Liu C, Zhong Y, Huang H, Lan S, Li J, Huang D, Zhang W. Killing two birds with one stone: Siglec-15 targeting integrated bioactive glasses hydrogel for treatment of breast cancer bone metastasis. Mater Today Bio 2024; 29:101362. [PMID: 39687802 PMCID: PMC11647236 DOI: 10.1016/j.mtbio.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Bone metastasis is a fatal consequence of breast cancer that occurs when patients fail to respond to conventional therapies and mainly result from a vicious cycle involving dysregulated bone homeostasis and uncontrolled tumor growth. Recent research has underscored the significance of Siglec-15, a membrane protein implicated in immunosuppression and osteoclast generation. Targeting Siglec-15 may disrupt the "vicious cycle" that causes bone metastases in patients with breast cancer. Herein, we explored the efficacy of targeting Siglec-15 in conjunction with photothermal chemotherapy to impede the progression of bone metastatic during breast cancer and repair tumor-induced osteolysis. First, we formulated an injectable photothermal bioactive glass (BG)-based hydrogel for the local delivery of Siglec-15 shRNA and doxorubicin. The results demonstrated that the hydrogel could kill tumor cells directly through photothermal chemotherapy, provoke intense immune responses and improve the local immunosuppressive microenvironment, which could effectively prevent tumor metastasis and recurrence in a murine model. The combined effect of BGs and Siglec15 shRNA can normalize dysregulated bone homeostasis at the bone metastasis site and significantly reduced bone destruction. Overall, the use of Siglec-15-targeting integrated BG hydrogels may provide a promising therapeutic strategy for treating bone metastasis caused by breast cancer.
Collapse
Affiliation(s)
- Chengkuan Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yangui Zhong
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Haibo Huang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Siyuan Lan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Jing Li
- Second People's Hospital of Shenzhen, Shenzhen, Guangdong, PR China
| | - Deqiu Huang
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Intelligent Chinese Medicine Research Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Wen Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
3
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
4
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Goleij P, Babamohamadi M, Rezaee A, Sanaye PM, Tabari MAK, Sadreddini S, Arefnezhad R, Motedayyen H. Types of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:41-63. [PMID: 38360005 DOI: 10.1016/bs.pmbts.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapy is one of the new treatments using small RNA molecules to target and regulate gene expression. It involves the application of synthetic or modified RNA molecules to inhibit the expression of disease-causing genes specifically. In other words, it silences genes and suppresses the transcription process. The main theory behind RNA therapy is that RNA molecules can prevent the translation into proteins by binding to specific messenger RNA (mRNA) molecules. By targeting disease-related mRNA molecules, RNA therapy can effectively silence or reduce the development of harmful proteins. There are different types of RNA molecules used in therapy, including small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamer, ribozyme, and antisense oligonucleotides (ASOs). These molecules are designed to complement specific mRNA sequences, allowing them to bind and degrade the targeted mRNA or prevent its translation into protein. Nanotechnology is also highlighted to increase the efficacy of RNA-based drugs. In this chapter, while examining various methods of RNA therapy, we discuss the advantages and challenges of each.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
8
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
9
|
Dong S, Wang J, Guo Z, Zhang Y, Zha W, Wang Y, Liu C, Xing H, Li X. Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorg Med Chem 2023; 78:117135. [PMID: 36577327 DOI: 10.1016/j.bmc.2022.117135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Vascular endothelial growth factor A (VEGFA) plays an important role in the healing of skin wound. However, the application of VEGFA protein in clinic is limited because of its high cost manufacturing, complicated purification and poor pharmacokinetic profile. Herein, we developed nucleoside-modified mRNA encoding VEGFA encapsulated ionizable lipid nanoparticles (LNP) to improve angiogenesis and increase wound healing rate. First, VEGFA mRNA was synthesized by an in vitro transcription (IVT) method. After that, VEGFA mRNA-LNP was prepared by encapsulating mRNA in ionizable lipid based nanoparticles via a microfluidic mixer. The physicochemical properties of VEGFA mRNA-LNP were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that the VEGFA mRNA-LNP possessed regular spherical morphology with an average size of 112.67 nm and a negative Zeta potential of -3.43 mV. The LNP delivery system had excellent lysosome escape capability and high transfection efficiency. ELISA and Western Blot analysis indicated that the mRNA-LNP could express VEGFA protein in Human umbilical vein endothelial cells (HUVECs). Besides, endothelial tube formation, cell proliferation and scratch assays were performed. The results revealed VEGFA mRNA-LNP boosted angiogenesis, cell proliferation and cell migration by expressing VEGFA protein. Finally, C57BL/6 mouse model of skin wound was established and intradermally treated with VEGFA mRNA-LNP. The VEGFA mRNA-LNP treated wounds were almost healed with an average wound size of 1.56 mm2 compared with the blank of 18.66 mm2 after 9 days. The results indicated that the VEGFA mRNA-LNP was able to significantly expedite wound healing. Histological analysis further demonstrated tissue epithelialization, collagen deposition and enhancement of vascular density after treatment. Taken together, VEGFA mRNA-LNP can be uptaken by cells to express protein effectively and promote wound healing, which may provide a promising strategy for clinical remedy.
Collapse
Affiliation(s)
- Shuo Dong
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Ji Wang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Zongke Guo
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China.
| | - Yanhao Zhang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Wenhui Zha
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Yang Wang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Chao Liu
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Hanlei Xing
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Xinsong Li
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China.
| |
Collapse
|