1
|
Permana YS, Jang M, Yeom K, Fagan E, Kim YJ, Choi JH, Park JH. Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform. Biomater Sci 2025. [PMID: 39835476 DOI: 10.1039/d4bm01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Incorporation of polyethylene glycol (PEG) is widely used in lipid nanoparticle (LNP) formulation in order to achieve adequate stability due to its stealth properties. However, studies have detected the presence of anti-PEG neutralizing antibodies after PEGylated LNP treatment, which are associated with anaphylaxis, accelerated LNP clearance and premature release of cargo. Here, we report the development of LNPs incorporating ganglioside, a naturally occurring stealth lipid, as a PEG-free alternative. Physicochemical characterization showed that ganglioside-LNPs exhibited superior stability throughout prolonged cold storage compared to stealth-free LNPs, preventing particle aggregation. Additionally, there was no significant change in particle size after serum incubation, indicating the ability of ganglioside to prevent unwanted serum protein adsorption. These results exemplify the effective stealth properties of ganglioside. Furthermore, ganglioside-LNPs exhibited significantly higher mRNA transfection in vivo after intravenous administration compared to stealth-free LNPs. The ability of ganglioside to confer excellent stealth properties to LNPs while still enabling in vivo mRNA expression makes it a promising candidate as a natural substitute for immunogenic PEG in mRNA-LNP delivery platforms, contributing to the future advancement of gene therapy.
Collapse
Affiliation(s)
- Yafi S Permana
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Mincheol Jang
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Kyunghwan Yeom
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Erinn Fagan
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yong Jae Kim
- R&D, De novo Biotherapeutics, S-tower 17F, Saemunan-ro 82, Jongno-gu, Seoul, 03185, Republic of Korea
| | - Joon Hyeok Choi
- R&D, De novo Biotherapeutics, S-tower 17F, Saemunan-ro 82, Jongno-gu, Seoul, 03185, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Zhu Y, Chen H, Huang J, Cai X, Zhan B. TWEAK increases angiogenesis to promote diabetic skin wound healing by regulating Fn14/EGFR signaling. J Cosmet Dermatol 2024; 23:4230-4238. [PMID: 39166480 PMCID: PMC11626315 DOI: 10.1111/jocd.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of tumor necrosis factor superfamily, can bind to fibroblast growth factor-inducible 14 (Fn14) receptor and stimulate angiogenesis. The interaction between epidermal growth factor receptor (EGFR) and endothelial growth factor (EGF) leads to EGFR signal transduction and promotes angiogenesis. The objective of this study was to explore whether TWEAK participated in the diabetic skin wound healing by regulating Fn14/EGFR signaling. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with 35 mmol/L d-glucose and classified into the Control Group, High Glucose (HG) Group and HG + TWEAK Group. Then, the TWEAK expression and the proliferation, migration and tubule formation of HUVECs were detected, respectively. In vivo experiment, the diabetic model was established by injecting streptozotocin (STZ, 50 mg/kg) into male BALB/c mice. On the back of successfully modeled diabetic mice, a full-thickness skin wound of 6 mm diameter was formed. Then, the mice were randomly assigned into three groups: Blank Group, Phosphate Buffer Saline (PBS) Group, and TWEAK Group. Subsequently, expression levels of TWEAK, Fn14, EGFR and vascular endothelial growth factor (VEGF)-A were measured, and the CD31 expression in the wounded skin tissue of mice was checked by immunohistochemistry staining. RESULTS The expression level of TWEAK in HUVECs of HG Group decreased significantly, as well as the viability, migration, and tubule formation of cells. After over-expression of TWEAK, the cell viability, migration, and tubule formation abilities of HUVECs recovered remarkably. In vivo, the wound healing rate of diabetic mice was raised, the neovascularization was increased, and the CD31 expression in the wounded tissue was obviously upregulated after injection with recombinant TWEAK antibody. CONCLUSION TWEAK stimulates angiogenesis and accelerates the wound healing of diabetic skin by regulating Fn14/EGFR signaling.
Collapse
Affiliation(s)
- Ying‐jie Zhu
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenGuangdongChina
| | - Hu‐lin Chen
- Department of DermatologyGuangdong Women and Children HospitalGuangzhouGuangdongChina
| | - Jing‐kai Huang
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenGuangdongChina
| | - Xin‐jie Cai
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenGuangdongChina
| | - Bang‐le Zhan
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenGuangdongChina
| |
Collapse
|
3
|
Shi YZ, Wang ZJ, Shi N, Bai LY, Jiang YM, Jiang L, Liu T, Wei MZ, Qin ML, Luo XD. Anti-MRSA mechanism of spirostane saponin in Rohdea pachynema F.T.Wang & tang. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118327. [PMID: 38750987 DOI: 10.1016/j.jep.2024.118327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Rohdea pachynema F.T.Wang & Tang (R. pachynema), is a traditional folk medicine used for the treatment of stomach pain, stomach ulcers, bruises, and skin infections in China. Some of the diseases may relate to microbial infections in traditional applications. However few reports on its antimicrobial properties and bioactive components. AIM OF THE STUDY To identify its bioactive constituents against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, and its mechanism. MATERIALS AND METHODS The anti-MRSA ingredient 6α-O-[β-D-xylopyranosyl-(1 → 3)-β-D-quinovopyranosyl]-(25S)-5α-spirostan-3β-ol (XQS) was obtained from R. pachynema by phytochemical isolation. Subsequently, XQS underwent screening using the broth microdilution method and growth inhibition curves to assess its antibacterial activity. The mechanism of XQS was evaluated by multigeneration induction, biofilm resistance assay, scanning electron microscopy, transmission electron microscopy, and metabolomics. Additionally, a mouse skin infection model was established in vivo. RESULTS 26 compounds were identified from the R. pachynema, in which anti-MRSA spirostane saponin (XQS) was reported for the first time with a minimum inhibitory concentration (MIC) of 8 μg/mL. XQS might bind to peptidoglycan (PGN) of the cell wall, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) of the cell membrane, then destroying the cell wall and the cell membrane, resulting in reduced membrane fluidity and membrane depolarization. Furthermore, XQS affected MRSA lipid metabolism, amino acid metabolism, and ABC transporters by metabolomics analysis, which targeted cell walls and membranes causing less susceptibility to drug resistance. Furthermore, XQS (8 mg/kg) recovered skin wounds in mice infected by MRSA effectively, superior to vancomycin (8 mg/kg). CONCLUSIONS XQS showed anti-MRSA bioactivity in vitro and in vivo, and its mechanism association with cell walls and membranes was reported for the first, which supported the traditional uses of R. pachynema and explained its sensitivity to MRSA.
Collapse
Affiliation(s)
- Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Nian Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yue-Ming Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ling Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Mei-Zheng Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ma-Long Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
4
|
Liu J, Zhang Y, Liu C, Jiang Y, Wang Z, Guo Z, Li X. A single dose of VEGF-A circular RNA sustains in situ long-term expression of protein to accelerate diabetic wound healing. J Control Release 2024; 373:319-335. [PMID: 38986911 DOI: 10.1016/j.jconrel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU. However, it is difficult to sustainably deliver VEGF to the wound site owing to its poor stability and easy degradation. To overcome this challenge, lipid nanoparticles (LNP) encapsulating circular RNA (circRNA) encoding VEGF-A have been developed to continuously generate and release VEGF-A and accelerate diabetic wound healing. First, VEGF-A circRNA was synthesized using group I intron autocatalysis strategy and confirmed by enzyme digestion, polymerase chain reaction, and sequencing assay. VEGF-A circRNA was encapsulated in ionizable lipid U-105-derived LNP (U-LNP) using microfluidic technology to fabricate U-LNP/VEGF-A circRNA. For comparison, a commercially ionizable lipid ALC-0315-derived LNP (A-LNP) encapsulating circRNA (A-LNP/circRNA) was used. Dynamic light scattering and transmission electron microscopy characterization indicated that U-LNP/circRNA had spherical structure with an average diameter of 108.5 nm, a polydispersity index of 0.22, and a zeta potential of -3.31 mV. The messenger RNA (mRNA) encapsulation efficiency (EE%) of U-LNP was 87.12%. In vitro transfection data confirmed better stability and long-term VEGF-A expression of circRNA compared with linear mRNA. Assessment of cytotoxicity and innate immunity further revealed that U-LNP/circRNA was biocompatible and induced a weak congenital immune response. Cell scratch and angiogenesis tests demonstrated the bioactivity of U-LNP/VEGF-A circRNA owing to its VEGF-A expression. In situ bioluminescence imaging of firefly luciferase (F-Luc) probe and ELISA demonstrated that circRNA had long-term and strong expression of VEGF-A in the first week, and a gradual decrease in the next week at the wound site and surrounding areas. Finally, a diabetic mouse model was used to validate the healing effect of U-LNP/VEGF-A circRNA formulation. The results showed that a single dose of U-LNP/VEGF-A circRNA administered by dripping resulted in almost complete wound recovery on day 12, which was significantly superior to that of U-LNP/VEGF-A linear mRNA, and it also outperformed recombinant human vascular endothelial growth factor (rhVEGF) injection and A-LNP/circRNA dripping. Histological analysis confirmed the healing efficiency and low toxicity of U-LNP/VEGF-A circRNA formulation. Together, VEGF-A circRNA delivered by U-105-derived LNP showed good performance in wound healing, which was ascribed to the long-term expression and continuous release of VEGF-A, and has potential applications for the treatment of diabetic foot ulcer wounds.
Collapse
Affiliation(s)
- Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zongke Guo
- Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Gregersen CH, Mearraoui R, Søgaard PP, Clergeaud G, Petersson K, Urquhart AJ, Simonsen JB. Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE. Eur J Pharm Biopharm 2024; 197:114219. [PMID: 38368913 DOI: 10.1016/j.ejpb.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI ∼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.
Collapse
Affiliation(s)
- Camilla Hald Gregersen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark; Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Razan Mearraoui
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark; Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pia Pernille Søgaard
- In Vitro Biology, Molecular Biomedicine, Research and early development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Gael Clergeaud
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B Simonsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark.
| |
Collapse
|
8
|
Wlodarczyk J, Leng A, Abadchi SN, Shababi N, Mokhtari-Esbuie F, Gheshlaghi S, Ravari MR, Pippenger EK, Afrasiabi A, Ha J, Abraham JM, Harmon JW. Transfection of hypoxia-inducible factor-1α mRNA upregulates the expression of genes encoding angiogenic growth factors. Sci Rep 2024; 14:6738. [PMID: 38509125 PMCID: PMC10954730 DOI: 10.1038/s41598-024-54941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs-one predominant, three variant, and two novel mutant isoforms-into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 h), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student's T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
- Department of General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Albert Leng
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Sanaz Nourmohammadi Abadchi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Niloufar Shababi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Farzad Mokhtari-Esbuie
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Shayan Gheshlaghi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Mohsen Rouhani Ravari
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
- Department of Surgery, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Emma K Pippenger
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Ali Afrasiabi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Jinny Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - John M Abraham
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
Sugiyama N, Uehara O, Kawano Y, Paudel D, Morikawa T, Nakamoto N, Kato S, Takayama T, Nagasawa T, Miura H, Abiko Y, Furuichi Y. Ingenuity pathway analysis of gingival epithelial cells stimulated with estradiol and progesterone. J Oral Biosci 2024; 66:26-34. [PMID: 37949170 DOI: 10.1016/j.job.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Periodontal disease is a risk factor for preterm delivery, and elevated female hormone levels during pregnancy promote hormone-dependent periodontopathogenic bacterial growth and gingivitis. Although the saliva of pregnant women contains female hormones at elevated levels, their effects on the gingiva are poorly understood. Therefore, in this study, we investigated the effects of estradiol and progesterone stimulation on gingival epithelial cells via ingenuity pathway analysis. METHODS Human gingival epithelial progenitors were cultured in a CnT-Prime medium; 17β-estradiol (E2) and progesterone (P4) were used as the reagents. Cells treated with dimethyl sulfoxide alone were used as the control group. Cells in the control and experimental groups were incubated for 12 h. RNA was extracted from the cultured cells, RNA-Seq was performed, and pathway analysis was conducted. RESULTS Differentially expressed genes were detected for 699 (over 2-fold increase) and 348 (decrease) genes in group E2 and for 1448 (increase) and 924 (decrease) genes in group P4 compared with those in the control group (FDR <0.05, n = 4). The z-scores of the pathways suggest that E2 and P4 increased the activity of the wound healing signaling pathway. The activation of this pathway was higher in the E2 and P4 groups than that in the control group. CONCLUSIONS The results of this study suggest that estradiol and progesterone may affect gingival homeostasis and wound healing.
Collapse
Affiliation(s)
- Nodoka Sugiyama
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan.
| | - Osamu Uehara
- Division of Disease Controlrol and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061- 0293, Japan
| | - Yutaka Kawano
- Department of Gastroenterology and Oncology Tokushima University Graduate School of Biomedical Sciences, Tokushima, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757, Ishikari- Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Norihiro Nakamoto
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Satsuki Kato
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology Tokushima University Graduate School of Biomedical Sciences, Tokushima, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| | - Hiroko Miura
- Division of Disease Controlrol and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061- 0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan.
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health, Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Kanazawa, Hokkaido, 061-0293, Japan
| |
Collapse
|
10
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
11
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
12
|
Lan Z, Tan X, Chen C, Cao Y, Wan Y, Feng S. Folate-mediated magnetic and pH/GSH dual-responsive metal-polymer-coordinated nanocomplexes for joint chemo/chemodynamic anti-breast cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2041-2059. [PMID: 37104876 DOI: 10.1080/09205063.2023.2208458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
It is of great significance to develop a drug carrier that effectively targets chemotherapeutic drugs to the tumor site, improves therapeutic efficacy and reduces side effects associated with high-dose medicines. In the present study, an intelligent drug carrier system, FA-β-CD/DOX@Cu2+@GA@Fe3O4, was synthesized by skillfully introducing metal ions as a bridge base. The performance of the prepared FA-β-CD@Cu2+@GA@Fe3O4 metal-polymer-coordinated nanocomplexes were determined by UV-visible spectroscopy, NMR, FT-IR, XPS, VSM, DLS, and TEM analysis. The data showed that these nanocomplexes had good pH/GSH-responsive drug release behavior, and enabled enhanced magnetic and folic acid-mediated tumor cell targeting. Moreover, the toxicity effects of the FA-β-CD/DOX@Cu2+@GA@Fe3O4 on 3T3 cells and 4T1 cells were measured by the MTT method, and it was found that it displayed low cytotoxicity against 3T3 cells and had a stronger effect on killing 4T1 cells than DOX alone. The results also showed that the Cu2+-based coordination polymers had a significant ability to deplete GSH and generate ROS. It could be concluded that the introduction of Cu2+ not only facilitated the assembly of nanocomplexes, but also successfully enhanced the anti-tumor effect, making FA-β-CD@Cu2+@GA@Fe3O4 a potential nanoplatform for effectively mediating combined chemotherapy and chemokinetic therapy for tumors. All these characteristics verified the great potential of FA-β-CD/DOX@Cu2+@GA@Fe3O4 in multipurpose smart drug delivery systems, accelerating the application range of metal-polymer-coordinated nanocomplexes in biomedical fields.
Collapse
Affiliation(s)
- Zhuo Lan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaopei Tan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Cheng Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yu Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
13
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|