1
|
Kuan TH, Kotipalli T, Chen CC, Hou DR. Addition of benzyl ethers to alkynes: a metal-free synthesis of 1 H-isochromenes. Org Biomol Chem 2021; 19:10390-10402. [PMID: 34825694 DOI: 10.1039/d1ob01941d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bromotrimethylsilane (TMSBr)-promoted intramolecular cyclization of (o-arylethynyl)benzyl ethers to form 1H-isochromenes at room temperature is reported. Further studies indicated that vinyl carbocations are the reaction intermediates which are stabilized by the conjugated aryl groups. Thus, O-addition of benzyl ethers/tetrahydropyrans to alkynes was achieved under metal-free, acidic conditions. These reaction conditions were compatible with an alkynyl Prins reaction; therefore, 1H-isochromenes were produced directly from alkynyl benzaldehydes and alkynyl alcohols using a one-pot procedure.
Collapse
Affiliation(s)
- Tzu-Hsuan Kuan
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Trimurtulu Kotipalli
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Cheng-Chun Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| |
Collapse
|
2
|
Jang JH, Cho YC, Kim KH, Lee KS, Lee J, Kim DE, Park JS, Jang BC, Kim S, Kwon TK, Park JW. BAI, a novel Cdk inhibitor, enhances farnesyltransferase inhibitor LB42708-mediated apoptosis in renal carcinoma cells through the downregulation of Bcl-2 and c-FLIP (L). Int J Oncol 2014; 45:1680-90. [PMID: 24993441 DOI: 10.3892/ijo.2014.2534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/26/2014] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the potential of a novel Cdk inhibitor, 2-[1,1'-biphenyl]-4-yl-N-[5-(1,1-dioxo-1λ6-isothiazolidin-2-yl)-1H-indazol-3-yl]acetamide (BAI) as a cancer chemotherapeutic agent. In this study, we investigated mechanisms by which BAI modulates FTI-mediated apoptosis in human renal carcinoma Caki cells. BAI synergizes with FTI to activate DEVDase, cleavage of poly ADP-ribose polymerase (PARP), and degradation of various anti-apoptotic proteins in Caki cells. BAI plus LB42708-induced apoptosis was inhibited by pretreatment with pan-caspase inhibitor, z-VAD-fmk, but not by overexpression of CrmA. The ROS scavenger, N-acetylcysteine (NAC) did not reduce BAI plus LB4270-induced apoptosis. Co-treatment of BAI and LB42708 reduced the mitochondrial membrane potential (MMP, ∆Ψm) in a time-dependent manner, and induced release of AIF and cytochrome c from mitochondria in Caki cells. Furthermore, BAL plus LB42708 induced downregulation of anti-apoptotic proteins [c-FLIP (L), c-FLIP (s), Bcl-2, XIAP, and Mcl-1 (L)]. Especially, we found that BAI plus LB42708-induced apoptosis was significantly attenuated by overexpression of Bcl-2 and partially blocked by overexpression of c-FLIP (L). Taken together, our results show that the activity of BAI plus LB42708 modulate multiple components in apoptotic response of human renal Caki cells, and indicate a potential as combinational therapeutic agents for preventing cancer such as renal carcinoma.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Yoon Chul Cho
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Ki Ho Kim
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Kyung Seop Lee
- Department of Urology, Dongguk University, College of Medicine, Gyeongju, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, Keimyung University, Daegu, Republic of Korea
| | - Dong Eun Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jun-Soo Park
- Chronic Disease Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Byeong-Churl Jang
- Chronic Disease Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Lin NH, Wang L, Wang X, Wang GT, Cohen J, Gu WZ, Zhang H, Rosenberg SH, Sham HL. Synthesis and biological evaluation of 1-benzyl-5-(3-biphenyl-2-yl-propyl)-1H-imidazole as novel farnesyltransferase inhibitor. Bioorg Med Chem Lett 2004; 14:5057-62. [PMID: 15380198 DOI: 10.1016/j.bmcl.2004.07.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 07/29/2004] [Accepted: 07/30/2004] [Indexed: 11/23/2022]
Abstract
Farnesyltransferase inhibitors (FTIs) have emerged as a novel class of anti-cancer agents. Analogs of the potent FTI, 1-benzyl-5-(3-biphenyl-2-yl-propyl)-1H-imidazole, were synthesized and tested in vitro for their inhibitory activities. The most promising compound identified from this series is analog 29 that possesses potent enzymatic and cellular activities.
Collapse
Affiliation(s)
- Nan-Horng Lin
- Cancer Research, R-47B, Global Pharmaceutical Products Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|