1
|
Coney MD, Morris DC, Gilbert A, Prescott SW, Haines RS, Harper JB. Effects of Ionic Liquids on the Nucleofugality of Chloride. J Org Chem 2021; 87:1767-1779. [PMID: 34756050 DOI: 10.1021/acs.joc.1c02043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleofugality of chloride has been measured in solvent mixtures containing ionic liquids for the first time, allowing reactivity in these solvents to be put in context with molecular solvents. Using well-described electrofuges, solvolysis rate constants were determined in mixtures containing different proportions of ethanol and the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; the different solvent effects observed as the mixture changed could be explained using interactions of the ionic liquid with species along the reaction coordinate, determined using temperature dependent kinetic studies. The solvolysis data allowed determination of the nucleofugality of chloride in these mixtures, which varied with the proportion of salt in the reaction mixture, demonstrating quantitatively the importance of the amount of ionic liquid in the reaction mixture in determining reaction outcome. Nucleofugality data for chloride were determined in seven further ionic liquids, with the reactivity shown to vary over more than an order of magnitude. This outcome illustrates that the components of the ionic liquid are critical in determining reaction outcome. Overall, this work quantitatively extends the understanding of solvent effects in ionic liquids and demonstrates the potential for such information to be used to rationally select an ionic liquid to control reaction outcome.
Collapse
|
2
|
Christensen ST, Grell AS, Johansson SE, Andersson CM, Edvinsson L, Haanes KA. Synergistic effects of a cremophor EL drug delivery system and its U0126 cargo in an ex vivo model. Drug Deliv 2019; 26:680-688. [PMID: 31274009 PMCID: PMC6691891 DOI: 10.1080/10717544.2019.1636421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroprotection has proven clinically unsuccessful in subarachnoid hemorrhage. We believe that this is because the major component in the early damage pathway, the vascular wall, has not been given the necessary focus. U0126 is a potent inhibitor of vascular phenotypical changes, exemplified by functional endothelin B (ETB) receptor upregulation. The current study aimed to determine the optimal dose of U0126 ex vivo and test the toxicology of this dose in vivo. To find the optimal dose and test a suitable in vivo delivery system, we applied an ex vivo model of blood flow cessation and investigated functional ETB receptor upregulation (using a specific agonist) as the primary endpoint. The secondary endpoint was depolarization-induced contractility assessed by 60 mM K+ stimuli. Furthermore, an in vivo toxicology study was performed on the optimal selected doses. U0126 (10 µM) had a strong effect on the prevention of functional ETB receptor contractility, combined with minimal effect on the depolarization-induced contractility. When cremophor EL was chosen for drug delivery, it had an inhibitory and additive effect (combined with U0126) on the ETB receptor contractility. Hence, 10 µM U0126 in 0.5% cremophor EL seems to be a dose that will be close to the maximal inhibition observed ex vivo on basilar arteries, without exhibiting side effects in the toxicology studies. U0126 and cremophor EL are well tolerated at doses that have effect on ETB receptor upregulation. Cremophor EL has an additional positive effect, preventing functional ETB receptor upregulation, making it suitable as a drug delivery system.
Collapse
Affiliation(s)
- S T Christensen
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - A S Grell
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - S E Johansson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | | | - L Edvinsson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark.,c Department of Clinical Sciences, Division of Experimental Vascular Research , Lund University , Lund , Sweden
| | - K A Haanes
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| |
Collapse
|
3
|
Chernyavsky AI, Galitovskiy V, Grando SA. Molecular mechanisms of synergy of corneal muscarinic and nicotinic acetylcholine receptors in upregulation of E-cadherin expression. Int Immunopharmacol 2015; 29:15-20. [DOI: 10.1016/j.intimp.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 12/20/2022]
|
4
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. The MEK1/2 inhibitor, MEKi-1, induces cell death in chronic lymphocytic leukemia cells under conditions that mimic the tumor microenvironment and is synergistic with fludarabine. Leuk Lymphoma 2015; 56:3407-17. [PMID: 25804768 DOI: 10.3109/10428194.2015.1032963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Raf-1/MEK/ERK1/2 pathway has become a focus for novel cancer therapies. This study sought to investigate whether targeting MEK1/2 may represent a therapeutic option for chronic lymphocytic leukemia (CLL). The MEK1/2 inhibitor, MEKi-1, induced apoptosis of CLL cells and was synergistic with fludarabine under conditions that mimic the tumor microenvironment, irrespective of poor-risk characteristics. MEKi-1 down-regulated the activities of AKT and ERK1/2 and was synergistic with fludarabine through a mechanism that involved potentiation of DNA damage and attenuation of the activity of ERK1/2 and expression of Mcl-1. This study highlights the significant role of the mitogen-activated protein kinase (MAPK)-ERK1/2 pathway in mediating the effects of the CLL tumor microenvironment and suggests that targeting MEK1/2 in CLL cells may impact upon the activity of both ERK1/2 and AKT. Inhibitors of MEK1/2 as single agents or in combination with DNA-damaging agents may represent a novel therapeutic strategy for CLL.
Collapse
Affiliation(s)
- Kyle Crassini
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - William S Stevenson
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - Stephen P Mulligan
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - O Giles Best
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| |
Collapse
|
5
|
Liu JC, Yu Y, Wang G, Wang K, Yang XG. Bis(acetylacetonato)-oxovanadium(iv), bis(maltolato)-oxovanadium(iv) and sodium metavanadate induce antilipolytic effects by regulating hormone-sensitive lipase and perilipin via activation of Akt. Metallomics 2014; 5:813-20. [PMID: 23576171 DOI: 10.1039/c3mt00001j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increased plasma free fatty acid levels due to the deregulated lipolysis in adipocytes are considered as one of the major risk factors for developing type II diabetes. Vanadium compounds are well-known for their antidiabetic effects both on glucose and lipid metabolism, but the mechanisms are still not completely understood. The present study suggests a mechanism for how vanadium compounds exert antilipolytic effects. It demonstrates that all the three vanadium compounds, bis(acetylacetonato)-oxovanadium(iv) (VO(acac)2), bis(maltolato)-oxovanadium(iv) (VO(ma)2) and sodium metavanadate (NaVO3), attenuated basal lipolysis in 3T3L1 adipocytes in a dose- (from 100 to 400 μM for VO(acac)2 and VO(ma)2, 1.0 to 4.0 mM for vanadate) and time-dependent (from 0.5 to 4 h) manner using the glycerol release as a marker of lipolysis. In addition, the three compounds inhibited lipolysis to a different extent. Among them, VO(acac)2 (from 100 to 400 μM) exerted the most potent effect and reduced the lipolysis to ∼60-20% of control after 4 h treatment. The antilipolytic effects of vanadium compounds were further evidenced by a decrease of the levels of phosphorylated HSL at Ser660 and phosphorylated perilipin, which were counteracted by inhibitors of PI3K or Akt but not by an MEK inhibitor. This indicates that though both Akt and ERK pathways are activated by the vanadium compounds, only Akt activation contributes to the antilipolytic effect of the vanadium compounds, without the involvement of ERK activation. We previously demonstrated that VO(acac)2 can block cell cycle progression at the G1/S phase via a highly activated ERK signal in human hepatoma HepG2 cells. Together with this study, we show that similar activated pathways may lead to differential biological consequences for cancer cells and adipocytes, indicating that vanadium compounds may be used in the prevention and treatment of both diabetes and cancer.
Collapse
Affiliation(s)
- Jing-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
Alcolea MP, Casado P, Rodríguez-Prados JC, Vanhaesebroeck B, Cutillas PR. Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 2012; 11:453-66. [PMID: 22547687 DOI: 10.1074/mcp.m112.017483] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein kinase signaling is fundamental to cell homeostasis and is deregulated in all cancers but varies between patients. Understanding the mechanisms underlying this heterogeneity is critical for personalized targeted therapies. Here, we used a recently established LC-MS/MS platform to profile protein phosphorylation in acute myeloid leukemia cell lines with different sensitivities to kinase inhibitors. The compounds used in this study were originally developed to target Janus kinase, phosphatidylinositol 3-kinase, and MEK. After further validation of the technique, we identified several phosphorylation sites that were inhibited by these compounds but whose intensities did not always correlate with growth inhibition sensitivity. In contrast, several hundred phosphorylation sites that correlated with sensitivity/resistance were not in general inhibited by the compounds. These results indicate that markers of pathway activity may not always be reliable indicators of sensitivity of cancer cells to inhibitors that target such pathways, because the activity of parallel kinases can contribute to resistance. By mining our data we identified protein kinase C isoforms as one of such parallel pathways being more active in resistant cells. Consistent with the view that several parallel kinase pathways were contributing to resistance, inhibitors that target protein kinase C, MEK, and Janus kinase potentiated each other in arresting the proliferation of multidrug-resistant cells. Untargeted/unbiased approaches, such as the one described here, to quantify the activity of the intended target kinase pathway in concert with the activities of parallel kinase pathways will be invaluable to personalize therapies based on kinase inhibitors.
Collapse
Affiliation(s)
- Maria P Alcolea
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA. Upregulation of nuclear factor-kappaB expression by SLURP-1 is mediated by alpha7-nicotinic acetylcholine receptor and involves both ionic events and activation of protein kinases. Am J Physiol Cell Physiol 2010; 299:C903-11. [PMID: 20660165 PMCID: PMC2980298 DOI: 10.1152/ajpcell.00216.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/15/2010] [Indexed: 11/22/2022]
Abstract
SLURP-1 (secreted mammalian Ly-6/urokinase plasminogen activator receptor-related protein-1) is a novel auto/paracrine cholinergic peptide that can bind to α(7)-nicotinic acetylcholine receptor (nAChR), a high Ca(2+)-permeable ion channel coupled to regulation of nuclear factor-κB (NF-κB) expression. Elucidation of intracellular signaling events elicited by SLURP-1 is crucial for understanding the molecular mechanism of functioning of this novel hormone-like peptide that alters vital cell functions and can protect from tumorigenic transformation. In this study, we sought to dissect out the role of α(7)-nAChR in mediating the biologic effects of recombinant SLURP-1 on the immortalized line of human oral keratinocytes Het-1A. A multifold upregulation of the NF-κB expression at the mRNA and protein levels by SLURP-1 was only slightly diminished due to elimination of Na(+), whereas in Ca(2+)-free medium the effect of SLURP-1 was inhibited by >50%. Both in the absence of extracellular Ca(2+) and in the presence of Cd(2+) or Zn(2+), the SLURP-1-dependent elevation of NF-κB was almost completely blocked by inhibiting MEK1 activity. Downstream of α(7)-nAChR, the SLURP-1 signaling coupled to upregulation of NF-κB also involved Jak2 as well as Ca(2+)/calmodulin-dependent kinase II (CaMKII) and protein kinase C (PKC), whose inhibition significantly (P < 0.05) reduced the SLURP-1-induced upregulation of NF-κB. The obtained results indicated that activation of α(7)-nAChR by SLURP-1 leads to upregulation of the NF-κB gene expression due to activation of the Raf-1/MEK1/ERK1/2 cascade that proceeds via two complementary signaling pathways. One is mediated by the Ca(2+)-entry dependent CaMKII/PKC activation and another one by Ca(2+)-independent involvement of Jak2. Thus, there exists a previously not appreciated network of noncanonical auto/paracrine ligands of nAChR of the Ly-6 protein family, which merits further investigations.
Collapse
|
8
|
Chernyavsky AI, Arredondo J, Qian J, Galitovskiy V, Grando SA. Coupling of ionic events to protein kinase signaling cascades upon activation of alpha7 nicotinic receptor: cooperative regulation of alpha2-integrin expression and Rho kinase activity. J Biol Chem 2009; 284:22140-22148. [PMID: 19549780 DOI: 10.1074/jbc.m109.011395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defining the signaling mechanisms and effector proteins mediating phenotypic and mechanical plasticity of keratinocytes (KCs) during wound epithelialization is one of the major goals in epithelial cell biology. The acetylcholine (ACh)-gated ion channels, or nicotinic ACh receptors (nAChRs), mediate the nicotinergic signaling that controls crawling locomotion of KCs. To elucidate relative contributions of the ionic and protein kinase-mediated events elicited due to activation of alpha7 nAChRs, we quantitated expression of alpha2-integrin gene at the mRNA and protein levels and also measured Rho kinase activity in KCs stimulated with the alpha7 agonist AR-R17779 while blocking the Na+ or Ca2+ entry and/or inhibiting signaling kinases. The results demonstrated the existence of the two-component signaling systems coupling the ionic events and protein kinase signaling cascades downstream of alpha7 nAChR to simultaneous up-regulation of alpha2-integrin expression and activation of Rho kinase. The Raf/MEK1/ERK1/2 cascade up-regulating alpha2-integrin was activated due to both Ca2+-dependent recruitment of Ca2+/calmodulin-dependent protein kinase II and protein kinase C and Ca2+-independent activation of Ras. Likewise the phosphatidylinositol 3-kinase-mediated activation of Rho kinase was elicited due to both Ca2+ entry-dependent involvement of Ca2+/calmodulin-dependent protein kinase II and Ca2+-independent activation of Jak2. Thus, although the initial signals emanating from activated alpha7 nAChR are different in nature the pathways intersect at common effector molecules providing for a common end point effect. This novel paradigm of nAChR-mediated coordination of the ionic and metabolic signaling events can allow an auto/paracrine ACh to simultaneously alter gene expression and induce reciprocal changes in the cytoskeleton and contractile system of KCs required to compete a particular step of wound epithelialization.
Collapse
Affiliation(s)
- Alexander I Chernyavsky
- Departments of Dermatology and Biological Chemistry, University of California, Irvine, California 92697
| | - Juan Arredondo
- Departments of Dermatology and Biological Chemistry, University of California, Irvine, California 92697
| | - Jing Qian
- Departments of Dermatology and Biological Chemistry, University of California, Irvine, California 92697
| | - Valentin Galitovskiy
- Departments of Dermatology and Biological Chemistry, University of California, Irvine, California 92697
| | - Sergei A Grando
- Departments of Dermatology and Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
9
|
|
10
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008; 22:1356-68. [PMID: 18450646 DOI: 10.1096/fj.07-9965.com] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco products and nicotine alter the cell cycle and lead to squamatization of oral keratinocytes (KCs) and squamous cell carcinoma. Activation of nicotinic acetylcholine receptors (nAChRs) elicits Ca(2+) influx that varies in magnitude between different nAChR subtypes. Normal differentiation of KCs is associated with sequential expression of the nAChR subtypes with increasing Ca(2+) permeability, such as alpha5-containing alpha3 nAChR and alpha7 nAChR. Exposure to environmental tobacco smoke (ETS) or an equivalent concentration of nicotine accelerated by severalfold the alpha5 and alpha7 expression in KCs, which could be abolished by mecamylamine and alpha-bungarotoxin with different efficacies, suggesting the following sequence of autoregulation of the expression of nAChR subtypes: alpha3(beta2/beta4) > alpha3(beta2/beta4)alpha5 > alpha7 > alpha7. This conjecture was corroborated by results of quantitative assays of subunit mRNA and protein levels, using nAChR-specific pharmacologic antagonists and small interfering RNAs. The genomic effects of ETS and nicotine involved the transcription factor GATA-2 that showed a multifold increase in quantity and activity in exposed KCs. Using protein kinase inhibitors and dominant negative and constitutively active constructs, we characterized the principal signaling cascades mediating a switch in the nAChR subtype. Cumulative results indicated that the alpha3(beta2/beta4) to alpha3(beta2/beta4)alpha5 nAChR transition predominantly involved protein kinase C, alpha3(beta2/beta4)alpha5 to alpha7 nAChR transition-Ca(2+)/calmodulin-dependent protein kinase II and p38 MAPK, and alpha7 self-up-regulation-the p38 MAPK/Akt pathway, and JAK-2. These results provide a mechanistic insight into the genomic effects of ETS and nicotine on KCs and characterize signaling pathways mediating autoregulation of stepwise overexpression of nAChR subtypes with increasing Ca(2+) permeability in exposed cells. These observations have salient clinical implications, because a switch in the nAChR subunit composition can bring about a corresponding switch in receptor function, leading to profound pathobiologic effects observed in KCs exposed to tobacco products.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California, Irvine, C340 Medical Sciences I, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Varma H, Cheng R, Voisine C, Hart AC, Stockwell BR. Inhibitors of metabolism rescue cell death in Huntington's disease models. Proc Natl Acad Sci U S A 2007; 104:14525-30. [PMID: 17726098 PMCID: PMC1964858 DOI: 10.1073/pnas.0704482104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a fatal inherited neurodegenerative disorder. HD is caused by polyglutamine expansions in the huntingtin (htt) protein that result in neuronal loss and contribute to HD pathology. The mechanisms of neuronal loss in HD are elusive, and there is no therapy to alleviate HD. To find small molecules that slow neuronal loss in HD, we screened 1,040 biologically active molecules to identify suppressors of cell death in a neuronal cell culture model of HD. We found that inhibitors of mitochondrial function or glycolysis rescued cell death in this cell culture and in in vivo HD models. These inhibitors prevented cell death by activating prosurvival ERK and AKT signaling but without altering cellular ATP levels. ERK and AKT inhibition through the use of specific chemical inhibitors abrogated the rescue, whereas their activation through the use of growth factors rescued cell death, suggesting that this activation could explain the protective effect of metabolic inhibitors. Both ERK and AKT signaling are disrupted in HD, and activating these pathways is protective in several HD models. Our results reveal a mechanism for activating prosurvival signaling that could be exploited for treating HD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Cindy Voisine
- Department of Pathology, Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129
| | - Anne C. Hart
- Department of Pathology, Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129
| | - Brent R. Stockwell
- Departments of *Biological Sciences and
- Chemistry, Fairchild Center, MC 2406, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CCT. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury. Basic Res Cardiol 2007; 102:518-28. [PMID: 17694254 DOI: 10.1007/s00395-007-0671-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 12/16/2022]
Abstract
Protection against myocardial ischemia-reperfusion (I/R) injury involves activation of phosphatidylinositol-3-OH kinase (PI3K)- Akt/protein kinase B and p44/42 mitogen-activated protein kinase (MAPK), components of the reperfusion injury salvage kinase (RISK) pathway. The adipocytokine, apelin, activates PI3K-Akt and p44/42 in various tissues and we, therefore, hypothesised that it might demonstrate cardioprotective activity. Employing both in vivo (open-chest) and in vitro (Langendorff and cardiomyocytes) rodent (mouse and rat) models ofmyocardial I/R injury we investigated if apelin administered at reperfusion at concentrations akin to pharmacological doses possesses cardioprotective activity. Apelin-13 and the physiologically less potent peptide, apelin-36, decreased infarct size in vitro by 39.6% (p<0.01) and 26.1% (p<0.05) respectively. In vivo apelin-13 and apelin-36 reduced infarct size by 43.1% (p<0.01) and 32.7% (p<0.05). LY294002 and UO126, inhibitors of PI3K-Akt and p44/42 phosphorylation respectively, abolished the protective effects of apelin-13 in vitro.Western blot analysis provided further evidence for the involvement of PI3K-Akt and p44/42 in the cardioprotective actions of apelin. In addition,mitochondrial permeability transition pore (MPTP) opening was delayed by both apelin- 13 (127%, p<0.01) and apelin-36 (93%, p<0.01) which, in the case of apelin-13, was inhibited by LY294002 and mitogen-activated protein kinase kinase (MEK) inhibitor 1. This is the first study to yield evidence that the adipocytokine, apelin, produces direct cardioprotective actions involving the RISK pathway and the MPTP.
Collapse
Affiliation(s)
- James C Simpkin
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Smith CK, Windsor WT. Thermodynamics of nucleotide and non-ATP-competitive inhibitor binding to MEK1 by circular dichroism and isothermal titration calorimetry. Biochemistry 2007; 46:1358-67. [PMID: 17260965 DOI: 10.1021/bi061893w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. A wealth of information about the enzymatic activity of MEK1, its domain functions, and inhibitor action is available; however, the thermodynamic properties of the interaction between MEK1 and ligands, such as nucleotides and non-ATP-competitive inhibitors, have not been reported. This study describes the thermodynamic parameters for the binding interactions of MEK1, nucleotides, and non-ATP-competitive inhibitor complexes using temperature-dependent circular dichroism (TdCD) and isothermal titration calorimetry (ITC). Non-phosphorylated MEK1 (npMEK1) has a high affinity for both AMP-PNP and ADP (Kd approximately 2microM). The binding is enthalpically favored and Mg-dependent. The active, phosphorylated form of MEK1 (pMEK1) bound nucleotides with a similar high affinity (Kd approximately 2muM) and had a thermodynamic profile and Mg-dependence similar to that of the non-phosphorylated form. The non-ATP-competitive MEK1 inhibitors, U0126 and PD0325901, showed no preference for npMEK1 and pMEK1 by TdCD. TdCD results also showed that these inhibitors are more potent in the presence of the nucleotide than in its absence. The ternary complex, MEK1.PD0325901.nucleotide, showed synergistic binding as evidenced by a large, non-additive shift in the midpoint of the protein unfolding transition (Tm). This was apparent for both npMEK1 and pMEK1 using either ADP or AMP-PNP. ITC binding studies confirmed the synergistic binding effect. The ITC-determined affinity of nucleotide (AMP-PNP, ADP) binding to the npMEK1.PD0325901 complex was enhanced nearly 5-fold compared to nucleotide binding to npMEK1 alone. In addition, the affinity of PD0325901 binding to npMEK1.nucleotide complexes was increased nearly 10-fold relative to the affinity of PD0325901 for npMEK1 alone. These are the first thermodynamic binding studies that characterize the affinity of the allosteric non-ATP-competitive inhibitors U0126 and PD0325901 with and without the nucleotide. The results indicate these allosteric inhibitors have a dynamic range in the type of MEK1 activation states and nucleotide complexes that they can bind.
Collapse
Affiliation(s)
- Catherine K Smith
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA.
| | | |
Collapse
|
15
|
Abstract
Constitutive activation of the mitogen-activated protein (MAP) kinase signaling pathway by oncogenic stimulation is widespread in human cancers. With the recently demonstrated links between MAP kinase, histone phosphorylation, gene transcription factors, and hTERT gene promoter activity, abnormal MAP kinase activity is likely to be one of the essential forces that impact on hTERT gene transcription in transformed human cells. Several proteins have been implicated as playing important roles in MAP kinase signaling to hTERT gene, including Ets and activator protein-1 (AP-1). Inhibition of these signaling mechanisms may have a consequential effect on hTERT gene expression and telomerase activity. In this study, we brief the current progress and strategy in molecular targeting to the interface between MAP kinase and hTERT gene promoter in cancer.
Collapse
Affiliation(s)
- Dakang Xu
- Department of Immunology, Monash Medical School, Melbourne, Australia
| | | | | |
Collapse
|
16
|
El Abdellaoui H, Varaprasad CVNS, Barawkar D, Chakravarty S, Maderna A, Tam R, Chen H, Allan M, Wu JZ, Appleby T, Yan S, Zhang W, Lang S, Yao N, Hamatake R, Hong Z. Identification of isothiazole-4-carboxamidines derivatives as a novel class of allosteric MEK1 inhibitors. Bioorg Med Chem Lett 2006; 16:5561-6. [PMID: 16934458 DOI: 10.1016/j.bmcl.2006.08.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 11/25/2022]
Abstract
The development of potent, orally bioavailable, and selective series of 5-amino-3-hydroxy-N(1-hydroxypropane-2-yl)isothiazole-4-carboxamidine inhibitors of MEK1 and MEK-2 kinase is described. Optimization of the carboxamidine and the phenoxyaniline group led to the identification of 55 which gave good potency as in vitro MEK1 inhibitors, and good oral exposure in rat.
Collapse
Affiliation(s)
- Hassan El Abdellaoui
- Drug Discovery, Valeant Pharmaceutical Research and Development, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 2006; 20:2093-101. [PMID: 17012261 DOI: 10.1096/fj.06-6191com] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of tobacco products is associated with an increased incidence of periodontal disease, poor response to periodontal therapy, and a high risk for developing head and neck cancer. Nicotine and tobacco-derived nitrosamines have been shown to exhibit their pathobiologic effects due in part to activation of the nicotinic acetylcholine (ACh) receptors (nAChRs), mainly alpha7 nAChR, expressed by oral keratinocytes (KCs). This study was designed to gain mechanistic insight into alpha7-mediated morbidity of tobacco products in the oral cavity. We investigated the signaling pathways downstream of alpha7 nAChR in monolayers of oral KCs exposed for 24 h to aged and diluted sidestream cigarette smoke (ADSS) or an equivalent concentration of pure nicotine. By both real-time polymerase chain reaction (PCR) and In-cell Western, the KCs stimulated with ADSS or nicotine showed multifold increases of STAT-3. These effects could be completely blocked or significantly (P<0.05) diminished if the cells were pretreated with the alpha7 antagonist alpha-bungarotoxin (alphaBTX) or transfected with anti-alpha7 small interfering RNA (siRNA-alpha7). The use of pathway inhibitors revealed that signaling through the Ras/Raf-1/MEK1/ERK steps mediated alpha7-dependent up-regulation of STAT-3. Targeted mutation of the alpha7 gene prevented ERK1/2 activation by nicotine. Using the gel mobility shift assay, we demonstrated that an increased protein binding activity of STAT-3 caused by ADSS or pure nicotine was mediated by janus-activated kinase (JAK)-2. Activation of JAK-2/STAT-3 pathway could be prevented by alphaBTX or siRNA-alpha7. Thus, nuclear transactivation of STAT-3 in KCs exposed to tobacco products is mediated via intracellular signaling downstream from alpha7, which proceeds via two complementary pathways. The Ras/Raf-1/MEK1/ERK cascade culminates in up-regulated expression of the gene encoding STAT-3, whereas recruitment and activation of tyrosine kinase JAK-2 phosphorylates it. Elucidation of this novel mechanism of nicotine-dependent nuclear transactivation of STAT-3 identifies oral alpha7 nAChR as a promising molecular target to prevent, reverse, or retard tobacco-related periodontal disease and progression of head and neck cancer by receptor inhibitors.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California Davis, Sacramento, CA, USA
| | | | | | | | | |
Collapse
|
18
|
Lin G, Bella AJ, Lue TF, Lin CS. Brain‐Derived Neurotrophic Factor (BDNF) Acts Primarily via the JAK/STAT Pathway to Promote Neurite Growth in the Major Pelvic Ganglion of the Rat: Part 2. J Sex Med 2006; 3:821-829. [PMID: 16942527 DOI: 10.1111/j.1743-6109.2006.00292.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Surgical and radiation therapies of bladder and prostate cancers may damage cavernous nerves and cause erectile dysfunction (ED). We previously showed that brain-derived neurotrophic factor (BDNF) could restore erectile function in a neurogenic ED rat model. We now investigated the signaling mechanism of BDNF in major pelvic ganglia (MPG) explants. AIM To identify the signaling mechanism that mediates the neurotrophic effect of BDNF in cultured MPG. METHODS Major pelvic ganglia was isolated from male rats for immunohistochemistry and immunofluorescence staining to locate BDNF receptors, pan-neurotrophin 75 (p75), tropomyosin-related kinase B (TrkB), and tropomyosin-related kinase C (TrkC). The dorso-caudal region of MPG was treated with BDNF to determine the optimal dosage for promoting neurite growth. Specific kinase inhibitors AG490, KT5720, LY294002, and U0126 were then used to treat MPG either alone or prior to BDNF treatment. The treated MPG was examined for neurite growth and for expression and phosphorylation of JAK2, STAT1, and STAT3 by Western blot analysis. MAIN OUTCOME MEASURES Lengths of neurite growth from MPG were measured to quantify the effects of BDNF and to identify specific signaling pathways. Ratios of phosphorylated vs. unphosphoryated proteins of JAK2, STAT1, and STAT2 in control and treated MPG were determined to confirm JAK/STAT as the principal signaling pathway. RESULTS Tropomyosin-related kinase B and TrkC were localized to neurons whereas p75 to perineuronal satellite glial cells (SGC). The optimal dosage of BDNF for promoting MPG neurite growth was between 25 and 50 ng/mL. Among the four specific kinase inhibitors, AG490 was the strongest in suppressing MPG neurite growth as well as BDNF-induced phosphorylation of JAK2, STAT1, and STAT3. CONCLUSIONS In rat MPG, TrkB and TrkC were expressed in neurons, whereas p75 in SGC. Optimal BDNF dosage for promoting MPG neurite growth was between 25 and 50 ng/mL. BDNF promotes MPG neurite growth primarily by activating the JAK/STAT pathway.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology, Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| | - Anthony J Bella
- Knuppe Molecular Urology, Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology, Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ching-Shwun Lin
- Knuppe Molecular Urology, Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Varaprasad CVNS, Barawkar D, El Abdellaoui H, Chakravarty S, Allan M, Chen H, Zhang W, Wu JZ, Tam R, Hamatake R, Lang S, Hong Z. Discovery of 3-hydroxy-4-carboxyalkylamidino-5-arylamino-isothiazoles as potent MEK1 inhibitors. Bioorg Med Chem Lett 2006; 16:3975-80. [PMID: 16725322 DOI: 10.1016/j.bmcl.2006.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/25/2022]
Abstract
3-Hydroxy-4-carboxyalkylamidino-5-arylamino-isothiazoles were discovered as potent in vitro MEK1 inhibitors.
Collapse
Affiliation(s)
- Chamakura V N S Varaprasad
- Drug Discovery, Valeant Pharmaceutical Research and Development, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith CCT, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM. Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 2006; 149:5-13. [PMID: 16847434 PMCID: PMC1629412 DOI: 10.1038/sj.bjp.0706834] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Protection against ischaemia-reperfusion (I/R) injury involves PI3K-Akt and p44/42 MAPK activation. Leptin which regulates appetite and energy balance also promotes myocyte proliferation via PI3K-Akt and p44/42 MAPK activation. We, therefore, hypothesized that leptin may also exhibit cardioprotective activity. EXPERIMENTAL APPROACH The influence of leptin on I/R injury was examined in perfused hearts from C57Bl/6 J mice that underwent 35 min global ischaemia and 35 min reperfusion, infarct size being assessed by triphenyltetrazolium chloride staining. The concomitant activation of cell-signalling pathways was investigated by Western blotting. The effect of leptin on mitochondrial permeability transition pore (MPTP) opening was studied in rat cardiomyocytes. KEY RESULTS Leptin (10 nM) administered during reperfusion reduced infarct size significantly. Protection was blocked by either LY294002 or UO126, inhibitors of Akt and p44/42 MAPK, respectively. Western blotting confirmed that leptin stimulated p44/42 MAPK phosphorylation significantly. Akt phosphorylation was also enhanced but did not achieve statistical significance. Additionally, leptin treatment was associated with a significant increase in p38 phosphorylation. By contrast, leptin caused downregulation of phosphorylated and non-phosphorylated STAT3, and of total AMP-activated kinase. Cardiomyocytes responded to leptin with delayed opening of the MPTP and delayed time until contracture. CONCLUSIONS AND IMPLICATIONS Our data indicate for the first time that the adipocytokine, leptin, has direct cardioprotective properties which may involve the PI3-Akt and p44/42 MAPK pathways.
Collapse
Affiliation(s)
- C C T Smith
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - M M Mocanu
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - S M Davidson
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - A M Wynne
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - J C Simpkin
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
- Author for correspondence:
| |
Collapse
|
21
|
Chen Z, Kim SH, Barbosa SA, Huynh T, Tortolani DR, Leavitt KJ, Wei DD, Manne V, Ricca CS, Gullo-Brown J, Poss MA, Vaccaro W, Salvati ME. Pyrrolopyridazine MEK inhibitors. Bioorg Med Chem Lett 2006; 16:628-32. [PMID: 16275076 DOI: 10.1016/j.bmcl.2005.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/11/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
The synthesis and SAR of a series of pyrrolopyridazine MEK inhibitors are reported. Optimal activity was achieved by incorporation of a 4-phenoxyaniline substituent at C4 and an acylated amine at C6.
Collapse
Affiliation(s)
- Zhong Chen
- Bristol-Myers Squibb, Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543-4000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA. The Ras/Raf-1/MEK1/ERK Signaling Pathway Coupled to Integrin Expression Mediates Cholinergic Regulation of Keratinocyte Directional Migration. J Biol Chem 2005; 280:39220-8. [PMID: 16150734 DOI: 10.1074/jbc.m504407200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The physiologic mechanisms that determine directionality of lateral migration are a subject of intense research. Galvanotropism in a direct current (DC) electric field represents a natural model of cell re-orientation toward the direction of future migration. Keratinocyte migration is regulated through both the nicotinic and muscarinic classes of acetylcholine (ACh) receptors. We sought to identify the signaling pathway mediating the cholinergic regulation of chemotaxis and galvanotropism. The pharmacologic and molecular modifiers of the Ras/Raf-1/MEK1/ERK signaling pathway altered both chemotaxis toward choline and galvanotropism toward the cathode in a similar way, indicating that the same signaling steps were involved. The galvanotropism was abrogated due to inhibition of ACh production by hemicholinium-3 and restored by exogenously added carbachol. The concentration gradients of ACh and choline toward the cathode in a DC field were established by high-performance liquid chromatographic measurements. This suggested that keratinocyte galvanotaxis is, in effect, chemotaxis toward the concentration gradient of ACh, which it creates in a DC field due to its highly positive charge. A time-course immunofluorescence study of the membrane redistribution of ACh receptors in keratinocytes exposed to a DC field revealed rapid relocation to and clustering at the leading edge of alpha7 nicotinic and M(1) muscarinic receptors. Their inactivation with selective antagonists or small interfering RNAs inhibited galvanotropism, which could be prevented by transfecting the cells with constitutively active MEK1. The end-point effect of the cooperative signaling downstream from alpha7 and M(1) through the MEK1/ERK was an up-regulated expression of alpha(2) and alpha(3) integrins, as judged from the results of real-time PCR and quantitative immunoblotting. Thus, alpha7 works together with M(1) to orient a keratinocyte toward direction of its future migration. Both alpha7 and M(1) apparently engage the Ras/Raf/MEK/ERK pathway to up-regulate expression of the "sedentary" integrins required for stabilization of the lamellipodium at the keratinocyte leading edge.
Collapse
Affiliation(s)
- Alexander I Chernyavsky
- Department of Dermatology, University of California, School of Medicine, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|