1
|
WCK 4873 (INN: Nafithromycin): Structure-Activity relationship (SAR) identifying a novel lactone ketolide with activity against Streptococcus pneumoniae (SPN) and Streptococcus pyogenes (SPY). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
2
|
Zhao ZH, Zhang XX, Jin LL, Yang S, Lei PS. Synthesis and antibacterial activity of novel ketolides with 11,12-quinoylalkyl side chains. Bioorg Med Chem Lett 2018; 28:2358-2363. [DOI: 10.1016/j.bmcl.2018.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
|
3
|
Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem Rev 2018; 118:3887-3964. [PMID: 29608052 DOI: 10.1021/acs.chemrev.7b00778] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jiandong Wang
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory , RIKEN, and RIKEN Center for Sustainable Resourse Science , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry , University of the Basque Country UPV/EHU , 20018 San Sebastian , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
4
|
Synthesis of clarithromycin ketolides chemically modified at the unreactive C10-methyl group. Bioorg Med Chem 2017; 25:2313-2326. [DOI: 10.1016/j.bmc.2017.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/21/2022]
|
5
|
Synthesis and antibacterial activity of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives. J Antibiot (Tokyo) 2016; 69:811-817. [PMID: 27118243 DOI: 10.1038/ja.2016.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
A series of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives (6a-h) were designed, synthesized and evaluated for their antibacterial activities in vitro. Most of these compounds had significant antibacterial activity against two groups of pathogens of Methicillin-sensitive Staphylococcus aureus (MIC50=0.031-2 μg ml-1) except 6g and Methicillin-sensitive S. epidermidis (MIC50=0.031-0.5 μg ml-1). MIC90 of 6d against Methicillin-resistant S. epidermidis was at least 16-fold better than that of erythromycin (EMA), azithromycin (AZM) and ABT-773. 6d and 6e had more potent antibacterial activity against S. pneumoniae than EMA, AZM and ABT-773. In particular, compounds 6d and 6e also showed relatively potent activity against Haemophilus influenzae and Streptococcus hemolyticus.
Collapse
|
6
|
Ruan ZX, Huangfu DS, Xu XJ, Sun PH, Chen WM. 3D-QSAR and molecular docking for the discovery of ketolide derivatives. Expert Opin Drug Discov 2013; 8:427-44. [DOI: 10.1517/17460441.2013.774369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi-Xiong Ruan
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - De-Sheng Huangfu
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Xing-Jun Xu
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Ping-Hua Sun
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Wei-Min Chen
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| |
Collapse
|
7
|
Song QL, Guo BQ, Zhang W, Lan P, Sun PH, Chen WM. Design, synthesis and antibacterial activity of novel ketolides bearing an aryltetrazolyl-substituted alkyl side chain. J Antibiot (Tokyo) 2011; 64:571-81. [DOI: 10.1038/ja.2011.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Mwakwari SC, Guerrant W, Patil V, Khan SI, Tekwani BL, Gurard-Levin ZA, Mrksich M, Oyelere AK. Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton. J Med Chem 2010; 53:6100-11. [PMID: 20669972 DOI: 10.1021/jm100507q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibition of histone deacetylase (HDAC) function is a validated therapeutic strategy for cancer treatment. Of the several structurally distinct small molecule histone deacetylase inhibitors (HDACi) reported, macrocyclic depsipeptides possess the most complex cap groups and have demonstrated excellent HDAC inhibition potency and isoform selectivity. Unfortunately, the development of macrocyclic depsipeptides has been hampered in part because of development problems characteristic of large peptides and the complex reaction schemes required for their synthesis. Herein we report that tricyclic ketolide TE-802 is an excellent mimetic for the peptide backbone of macrocyclic HDACi. Compounds derived from this template are particularly selective against HDACs 1 and 2 with nanomolar inhibitory activity. Interrogation of the association between a subset of these compounds and key HDAC isoforms, using AutoDock, enables a molecular description of the interaction between the HDAC enzyme's outer rim and the inhibitors' macrocyclic cap group that are responsible for compound affinity and presumably isoform selectivity.
Collapse
Affiliation(s)
- Sandra C Mwakwari
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
6-Alkylquinolone-3-carboxylic acid tethered to macrolides synthesis and antimicrobial profile. Bioorg Med Chem 2010; 18:6569-77. [DOI: 10.1016/j.bmc.2010.06.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022]
|
10
|
Liang JH, Wang YY, Wang H, Li XL, An K, Xu YC, Yao GW. Synthesis and antibacterial activities of a novel alkylide: 3-O-(3-aryl-2-propargyl) and 3-O-(3-aryl-2-propenyl)clarithromycin derivatives. Bioorg Med Chem Lett 2010; 20:2880-3. [DOI: 10.1016/j.bmcl.2010.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/03/2010] [Accepted: 03/06/2010] [Indexed: 11/30/2022]
|
11
|
Yong H, Gu YG, Clark RF, Marron T, Ma Z, Soni N, Stone GG, Nilius AM, Marsh K, Djuric SW. Design, synthesis and structure-activity relationships of 6-O-arylpropargyl diazalides with potent activity against multidrug-resistant Streptococcus pneumoniae. Bioorg Med Chem Lett 2005; 15:2653-8. [PMID: 15863336 DOI: 10.1016/j.bmcl.2005.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/02/2005] [Accepted: 03/03/2005] [Indexed: 11/20/2022]
Abstract
A novel series of 6-O-arylpropargyl diazalides was synthesized and evaluated for their antibacterial activity. Members of this series exhibited potent activity against erythromycin-resistant respiratory tract pathogens.
Collapse
Affiliation(s)
- Hong Yong
- Infectious Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60044, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu X, Henninger T, Abbanat D, Bush K, Foleno B, Hilliard J, Macielag M. Synthesis and antibacterial activity of C2-fluoro, C6-carbamate ketolides, and their C9-oximes. Bioorg Med Chem Lett 2005; 15:883-7. [PMID: 15686880 DOI: 10.1016/j.bmcl.2004.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/25/2022]
Abstract
Novel C6-carbamate ketolides with C2-fluorination and C9-oximation have been synthesized. The best compounds in this series displayed MIC values of 0.03-0.12 microg/mL against streptococci containing erm and mef resistance determinants and 2-4 microg/mL against Haemophilus influenzae. Several compounds also showed measurable activity against erm(B)-containing enterococci with MIC values of 2-8 microg/mL. In vivo activity was adversely affected by fluorination, possibly as a result of increased serum protein binding.
Collapse
Affiliation(s)
- Xiaodong Xu
- Antimicrobial Agents Research Team, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 1000 Route 202, PO Box 300, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | |
Collapse
|