1
|
Eletskaya BZ, Berzina MY, Fateev IV, Kayushin AL, Dorofeeva EV, Lutonina OI, Zorina EA, Antonov KV, Paramonov AS, Muzyka IS, Zhukova OS, Kiselevskiy MV, Miroshnikov AI, Esipov RS, Konstantinova ID. Enzymatic Synthesis of 2-Chloropurine Arabinonucleosides with Chiral Amino Acid Amides at the C6 Position and an Evaluation of Antiproliferative Activity In Vitro. Int J Mol Sci 2023; 24:ijms24076223. [PMID: 37047197 PMCID: PMC10094600 DOI: 10.3390/ijms24076223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
A number of purine arabinosides containing chiral amino acid amides at the C6 position of the purine were synthesized using a transglycosylation reaction with recombinant E. coli nucleoside phosphorylases. Arsenolysis of 2-chloropurine ribosides with chiral amino acid amides at C6 was used for the enzymatic synthesis, and the reaction equilibrium shifted towards the synthesis of arabinonucleosides. The synthesized nucleosides were shown to be resistant to the action of E. coli adenosine deaminase. The antiproliferative activity of the synthesized nucleosides was studied on human acute myeloid leukemia cell line U937. Among all the compounds, the serine derivative exhibited an activity level (IC50 = 16 μM) close to that of Nelarabine (IC50 = 3 μM) and was evaluated as active.
Collapse
Affiliation(s)
- Barbara Z. Eletskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
- Correspondence: (B.Z.E.); (I.D.K.)
| | - Maria Ya. Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ilya V. Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexei L. Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Elena V. Dorofeeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga I. Lutonina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ekaterina A. Zorina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Konstantin V. Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexander S. Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Inessa S. Muzyka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga S. Zhukova
- State N.N. Blokhin Russian Cancer Research Center, Kashirsky Highway, 24, 115478 Moscow, Russia
| | - Mikhail V. Kiselevskiy
- State N.N. Blokhin Russian Cancer Research Center, Kashirsky Highway, 24, 115478 Moscow, Russia
| | - Anatoly I. Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Roman S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Irina D. Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
- Correspondence: (B.Z.E.); (I.D.K.)
| |
Collapse
|
2
|
Nie P, Groaz E, Daelemans D, Herdewijn P. Xylo-C-nucleosides with a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base: Synthesis and antiproliferative properties. Bioorg Med Chem Lett 2019; 29:1450-1453. [PMID: 31005446 DOI: 10.1016/j.bmcl.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/27/2022]
Abstract
The synthesis of a xylo-C-nucleoside containing pyrrolo[2,1-f][1,2,4]triazin-4-amine as nucleobase along with that of its 1'-cyano analogue is described. Among different experimental conditions explored in order to optimize a key debenzylation step in the presented synthetic route, it was found that palladium catalyzed hydrogen transfer allowed for obtaining the target compounds in good yields. The resulting mixture of epimers was separated and each was characterized by NOESY NMR experiments. In vitro antiproliferative assays showed that the 1'-unsubstituted analogue was active against a panel of tumor cell lines such as the human leukemia HL-60 (IC50 = 1.9 µM) and lung cancer NCI-H460 (IC50 = 2.0 µM) cells.
Collapse
Affiliation(s)
- Peng Nie
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, Leuven 3000, Belgium
| | - Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, Leuven 3000, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, Leuven 3000, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, Leuven 3000, Belgium.
| |
Collapse
|
3
|
Won WS, Knapp S. β-D-Arabinosyl 1-C-sulfonic acid . J Sulphur Chem 2013; 34:33-37. [PMID: 28966658 DOI: 10.1080/17415993.2012.706814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A short synthetic route to β,d-arabinofuranosyl 1-C-sulfonic acid (7), a possible biomimetic for the arabinofuranosyl anomeric phosphate, is described. The furanosyl 1-C-sulfonate was prepared by buffered DMDO oxidation of an S-acetyl-1-thio-β-arabinofuranose derivative. Deprotection under mild conditions allowed isolation of the free sulfonic acid without desulfonylation.
Collapse
Affiliation(s)
- Walter S Won
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey
| |
Collapse
|
4
|
Médici R, Iribarren AM, Lewkowicz ES. Synthesis of 9-β-d-arabinofuranosylguanine by combined use of two whole cell biocatalysts. Bioorg Med Chem Lett 2009; 19:4210-2. [DOI: 10.1016/j.bmcl.2009.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 11/30/2022]
|