1
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
3
|
Andler O, Kazmaier U. Synthesis and biological evaluation of moiramide B derivatives. Org Biomol Chem 2024; 22:5284-5288. [PMID: 38864222 DOI: 10.1039/d4ob00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Moiramide B is a peptide-polyketide hybrid with a bacterial origin and interesting antibiotic activity. Besides its structurally conserved peptide part, it contains a highly variable fatty acid side chain. We modified this part of the molecule by introducing a terminal alkyne, and we then subjected it to click reactions and Sonogashira couplings. This provided a library of moiramide B derivatives with high and selective in vivo activities against S. aureus.
Collapse
Affiliation(s)
- Oliver Andler
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| |
Collapse
|
4
|
Rémondin C, Mignani S, Rochais C, Dallemagne P. Synthesis and interest in medicinal chemistry of β-phenylalanine derivatives (β-PAD): an update (2010-2022). Future Med Chem 2024; 16:1147-1162. [PMID: 38722231 PMCID: PMC11221601 DOI: 10.1080/17568919.2024.2347063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/19/2024] [Indexed: 06/26/2024] Open
Abstract
β-Phenylalanine derivatives (β-PAD) represent a structural family of therapeutic interest, either as components of drugs or as starting materials for access to key compounds. As scaffolds for medicinal chemistry work, β-PAD offer the advantage of great diversity and modularity, a chiral pseudopeptidic character that opens up the capacity to be recognized by natural systems, and greater stability than natural α-amino acids. Nevertheless, their synthesis remains a challenge in drug discovery and numerous methods have been devoted to their preparation. This review is an update of the access routes to β-PAD and their various therapeutic applications.
Collapse
Affiliation(s)
| | - Serge Mignani
- Normandie Univ.,
UNICAEN, CERMN,
14000, Caen, France
- UMR 860, Laboratoire de Chimie et de Biochimie
Pharmacologiques et Toxicologique, Université Paris
Descartes, PRES Sorbonne Paris Cité,
CNRS, 45 rue des Saints Pères,
75006, Paris, France
- CQM – Centro de Química da
Madeira, MMRG, Universidad da
Madeira, Campus da Penteada,
9020-105, Funchal,
Portugal
| | | | | |
Collapse
|
5
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
6
|
Cifone MT, He Y, Basu R, Wang N, Davoodi S, Spagnuolo LA, Si Y, Daryaee T, Stivala CE, Walker SG, Tonge PJ. Heterobivalent Inhibitors of Acetyl-CoA Carboxylase: Drug Target Residence Time and Time-Dependent Antibacterial Activity. J Med Chem 2022; 65:16510-16525. [PMID: 36459397 PMCID: PMC10303036 DOI: 10.1021/acs.jmedchem.2c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine 1 and moiramide B (3) which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound 17, which has a linker of 50 Å, was a tight binding inhibitor of Escherichia coli ACC (Kiapp 0.2 nM) and could be displaced from ACC by a combination of both 1 and 3 but not just by 1. In agreement with the prolonged occupancy of ACC resulting from forced proximity binding, the heterobivalent inhibitors produced a PAE in E. coli of 1-4 h in contrast to 1 and 3 in combination or alone, indicating that ACC is a vulnerable target and highlighting the utility of kinetic, time-dependent effects in the drug mechanism of action.
Collapse
Affiliation(s)
- Matthew T Cifone
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - YongLe He
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Rajeswari Basu
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Nan Wang
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Shabnam Davoodi
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Lauren A Spagnuolo
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Yuanyuan Si
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Taraneh Daryaee
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Craig E Stivala
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephen G Walker
- Department of Oral Biology and Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Peter J Tonge
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Radiology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
7
|
Portolani C, Centonze G, Righi P, Bencivenni G. Role of Cinchona Alkaloids in the Enantio- and Diastereoselective Synthesis of Axially Chiral Compounds. Acc Chem Res 2022; 55:3551-3571. [PMID: 36475607 PMCID: PMC9774690 DOI: 10.1021/acs.accounts.2c00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric synthesis using organic catalysts has evolved since it was first realized and defined. Nowadays, it can be considered a valid alternative to transition metal catalysis for synthesizing chiral molecules. According to the literature, the number of asymmetric organocatalytic processes associated with atropisomer synthesis has rapidly increased over the past 10 years because organocatalysis addresses the challenges posed by the most widespread strategies used for preparing axially chiral molecules with satisfactory results.These strategies, useful to prepare a wide range of C-C, C-heteroatom, and N-N atropisomers, vary from kinetic resolution to direct arylation, desymmetrization, and central-to-axial chirality conversion. In this field, our contribution focuses on determining novel methods for synthesizing atropisomers, during which, in most cases, the construction of one or more stereogenic centers other than the stereogenic axis occurred. To efficiently address this challenge, we exploited the ability of catalysts based on a cinchona alkaloid scaffold to realize enantioselective organic transformations. Desymmetrization of N-(2-tert-butylphenyl) maleimides was one of the first strategies that we pursued for preparing C-N atropisomers. The main principle is based on the presence of a rotationally hindered C-N single bond owing to the presence of a large tert-butyl group. Following the peculiar reactivity of this type of substrate as a powerful electrophile and dienophile, we realized several transformations.First, we investigated the vinylogous Michael addition of 3-substituted cyclohexenones, where a stereogenic axis and two contiguous stereocenters were concomitantly and remotely formed and stereocontrolled using a primary amine catalyst. Subsequently, we realized desymmetrization via an organocatalytic Diels-Alder reaction of activated unsaturated ketones that enabled highly atropselective transformation with efficient diastereoselectivity, thereby simultaneously controlling four stereogenic elements. Employing chiral organic bases allowed us to realize efficient desymmetrizations using carbon nucleophiles, such as 1,3-dicarbonyl compounds, cyanoacetates, and oxindoles. These reactions, performed with different types of catalysts, highlighted the versatility of organocatalysis as a powerful strategy for atropselective desymmetrization of pro-axially chiral maleimides.Hereafter, we studied the Friedel-Crafts alkylation of naphthols with indenones, a powerful method for enantioselective synthesis of conformationally restricted diastereoisomeric indanones. We realized the first axially chiral selective Knoevenagel condensation using cinchona alkaloid primary amine as the catalyst. This reaction provided a powerful method to access enantioenriched olefins containing the oxindole core. Subsequently, we initiated an intense program for the computational investigation of the reaction mechanism of our atropselective processes. An understanding of the catalytic activity for vinylogous atropselective desymmetrization as well as of the role played by the acidic cocatalyst used for the experimental work was achieved.Recently, we have garnered interest in the novel frontiers of atropselective synthesis. As observed in recent publications, there is considerable interest in the development of methods for preparing N-N atropisomers, an emerging topic in the field of atropselective synthesis. We focused on the synthesis of hydrazide atropisomers by developing a one-pot sequential catalysis protocol based on two sequential organocatalytic reactions that provided high stereocontrol of two contiguous stereogenic elements.
Collapse
Affiliation(s)
- Chiara Portolani
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giovanni Centonze
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Paolo Righi
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giorgio Bencivenni
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
8
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
9
|
Asymmetric Synthesis of Both Enantiomers of Dimethyl 2-Methylsuccinate by the Ene-Reductase-Catalyzed Reduction at High Substrate Concentration. Catalysts 2022. [DOI: 10.3390/catal12101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chiral dimethyl 2-methylsuccinate (1) is a very important building block for the manufacturing of many active pharmaceutical ingredients and fine chemicals. The asymmetric reduction of C=C double bond of dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) by ene-reductases (ERs) represents an attractive straightforward approach, but lack of high-performance ERs, especially (S)-selective ones, has limited implementing this method to prepare the optically pure dimethyl 2-methylsuccinate. Herein, three ERs (Bac-OYE1 from Bacillus sp., SeER from Saccharomyces eubayanus and AfER from Aspergillus flavus) with high substrate tolerance and stereoselectivity towards 2, 3 and 4 have been identified. Up to 500 mM of 3 was converted to (S)-dimethyl 2-methylsuccinate ((S)-1) by SeER in high yields (80%) and enantioselectivity (98% ee), and 700 mM of 2 and 400 mM of 4 were converted to (R)-1 by Bac-OYE1 and AfER, respectively, in high yields (86% and 77%) with excellent enantioselectivity (99% ee). The reductions of diethyl citraconate (5), diethyl mesaconate (6) and diethyl itaconate (7) were also tested with the three ERs. Although up to 500 mM of 5 was completely converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent enantioselectivity (99% ee), the alcohol moiety of the esters had a great effect on the activity and enantioselectivity of ERs. This work provides an efficient methodology for the enantiocomplementary production of optically pure dimethyl 2-methylsuccinate from dimethyl itaconate and its isomers at high titer.
Collapse
|
10
|
Mishra NP, Mohapatra S, Das T, Nayak S. Imidazo[1,2‐a]pyridine as a promising scaffold for the development of antibacterial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Tapaswini Das
- Department of Chemistry Ravenshaw University Cuttack India
| | - Sabita Nayak
- Department of Chemistry Ravenshaw University Cuttack India
| |
Collapse
|
11
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Kozma V, Szőllősi G. Conjugate addition of 1,3-dicarbonyl compounds to maleimides using bifunctional primary amine‒(thio)phosphoramide organocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Mallik S, Bhajammanavar V, Baidya M. Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butyrolactams: Synthesis of γ‐Heterosubstituted α,β‐Unsaturated γ‐Lactams. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Vinod Bhajammanavar
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| |
Collapse
|
14
|
Nguyen HT, Kim HG, Yu NH, Hwang IM, Kim H, Kim YC, Kim JC. In Vitro and In Vivo Antibacterial Activity of Serratamid, a Novel Peptide-Polyketide Antibiotic Isolated from Serratia plymuthica C1, against Phytopathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5471-5480. [PMID: 33914513 DOI: 10.1021/acs.jafc.1c01162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hybrid non-ribosomal peptide-polyketide antibiotic (serratamid) for phytoprotection was isolated from the ethyl acetate layer of tryptic soy agar culture of the soil bacterium Serratia plymuthica C1 through bioassay-guided fractionation. Its chemical structure was elucidated using instrumental analyses, such as mass and nuclear magnetic resonance spectrometry. Serratamid showed antibacterial activity against 15 phytopathogenic bacteria, with minimum inhibitory concentration (MIC) values ranging from 0.244 to 31.25 μg/mL. In vitro, it displayed strong antibacterial activity against Ralstonia solanacearum and four Xanthomonas spp., with MIC values (0.244-0.488 μg/mL) superior to those of streptomycin sulfate, oxolinic acid, and oxytetracycline. Further, serratamid and the ethyl acetate layer of S. plymuthica C1 effectively reduced bacterial wilt caused by R. solanacearum on tomato seedlings and fire blight caused by Erwinia on apple fruits in a dose-dependent manner. These results suggest that serratamid is a promising candidate as a potent bactericide for controlling bacterial diseases.
Collapse
Affiliation(s)
- Hoa Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Geun Kim
- Natural Product Chemistry Lab, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In Min Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
15
|
Zhang J, Liu M, Huang M, Li W, Zhang X. Enantioselective Dearomative [3+2] Annulation of 3‐Hydroxymaleimides with Azonaphthalenes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
16
|
Zhang J, Liu M, Huang M, Liu H, Yan Y, Zhang X. Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00128k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines provided a large variety of succinimide fused indolines in moderate to good yields with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hui Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
17
|
Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg Chem 2020; 108:104557. [PMID: 33376010 DOI: 10.1016/j.bioorg.2020.104557] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China.
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| |
Collapse
|
18
|
Du ZH, Qin WJ, Tao BX, Yuan M, Da CS. N-Primary-amine tetrapeptide-catalyzed highly asymmetric Michael addition of aliphatic aldehydes to maleimides. Org Biomol Chem 2020; 18:6899-6904. [PMID: 32856662 DOI: 10.1039/d0ob01457e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The highly asymmetric Michael addition reaction between maleimides and aliphatic aldehydes catalyzed by low-loading β-turn tetrapeptides with excellent yields and enantioselectivities at room temperature was reported. α-Branched and α-unbranched aldehydes both are suitable nucleophiles. N-Aryl, alkyl and hydrogen maleimides all are well tolerated and led to high yields and enantioselectivities. The transformation can be enlarged to the gram scale without decrease in the yield and enantioselectivity. Furthermore, the succinimides were converted into γ-lactams and γ-lactones, showing good practicality of this work. Some reaction intermediates in the proposed reaction mechanism can be captured with the HR-MS method.
Collapse
Affiliation(s)
- Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | |
Collapse
|
19
|
Chen J, Xu M, Yu S, Xia Y, Lee S. Nickel-Catalyzed Claisen Condensation Reaction between Two Different Amides. Org Lett 2020; 22:2287-2292. [DOI: 10.1021/acs.orglett.0c00485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Subeen Yu
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
20
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
21
|
Recent development in acetyl-CoA carboxylase inhibitors and their potential as novel drugs. Future Med Chem 2020; 12:533-561. [PMID: 32048880 DOI: 10.4155/fmc-2019-0312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acetyl-CoA carboxylase (ACC), a critical enzyme in the regulation of fatty acid synthesis and metabolism, has emerged as an attractive target for a plethora of emerging diseases, such as diabetes mellitus, nonalcoholic fatty liver disease, cancer, bacterial infections and so on. With decades of efforts in medicinal chemistry, significant progress has been made toward the design and discovery of a considerable number of inhibitors of this enzyme. In this review, we not only clarify the role of ACC in emerging diseases, but also summarize recent developments of potent ACC inhibitors and discuss their molecular mechanisms of action and potentials as novel drugs as well as future perspectives toward the design and discovery of novel ACC inhibitors.
Collapse
|
22
|
Amrutha U, P.Babu B, Prathapan S. Metal free synthesis of 1‐azaspiro[4.4]nonane‐3‐one system via reactions of nitrones with 1,1‐disubstituted allenes. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- U. Amrutha
- Department of Applied ChemistryCochin University of Science and Technology Kochi Kerala India
| | - Beneesh P.Babu
- Department of ChemistryNational Institute of Technology Karnataka Surathkal India
| | - Sreedharan Prathapan
- Department of Applied ChemistryCochin University of Science and Technology Kochi Kerala India
| |
Collapse
|
23
|
Li J, Wei J, Zhu B, Wang T, Jiao N. Cu-catalyzed oxygenation of alkene-tethered amides with O 2 via unactivated C[double bond, length as m-dash]C bond cleavage: a direct approach to cyclic imides. Chem Sci 2019; 10:9099-9103. [PMID: 31827752 PMCID: PMC6889834 DOI: 10.1039/c9sc03175h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient aerobic unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage process was achieved, in which the succinimide or glutarimide derivatives could be prepared directly from alkenyl amides.
The transformations of unactivated alkenes through C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond double cleavage are always attractive but very challenging. We report herein a chemoselective approach to valuable cyclic imides by a novel Cu-catalyzed geminal amino-oxygenation of unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds. O2 was successfully employed as the oxidant as well as the O-source and was incorporated into alkenyl amides via C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage for the efficient preparation of succinimide or glutarimide derivatives. Moreover, the present strategy under simple conditions can be used in the late-stage modification of biologically active compounds and the synthesis of pharmaceuticals, which demonstrated the potential application.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Teng Wang
- School of Chemistry , Beihang University , Xue Yuan Road 37 , Beijing , 100191 , China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China . .,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
24
|
Selective cleaving the N P bond of difluoromethylene phosphabetaines for effective synthesis of β-ketoamides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Ray B, Mukherjee S. Catalytic enantioselective Michael addition of deconjugated butyrolactams to maleimides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Szőllősi G, Kozma V. Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem 2018. [DOI: 10.1002/cctc.201800919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group Dóm tér 8 Szeged 6720 Hungary
| | - Viktória Kozma
- Department of Organic ChemistryUniversity of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
27
|
Wu Y, Seyedsayamdost MR. The Polyene Natural Product Thailandamide A Inhibits Fatty Acid Biosynthesis in Gram-Positive and Gram-Negative Bacteria. Biochemistry 2018; 57:4247-4251. [DOI: 10.1021/acs.biochem.8b00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Gemili M, Sari H, Ulger M, Sahin E, Nural Y. Pt(II) and Ni(II) complexes of octahydropyrrolo[3,4-c]pyrrole N -benzoylthiourea derivatives: Synthesis, characterization, physical parameters and biological activity. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
30
|
Ghannay S, Bakari S, Ghabi A, Kadri A, Msaddek M, Aouadi K. Stereoselective synthesis of enantiopure N -substituted pyrrolidin-2,5-dione derivatives by 1,3-dipolar cycloaddition and assessment of their in vitro antioxidant and antibacterial activities. Bioorg Med Chem Lett 2017; 27:2302-2307. [DOI: 10.1016/j.bmcl.2017.04.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
31
|
Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SAA, Hassan SSU. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chem Biol Drug Des 2017; 90:12-30. [PMID: 28004491 DOI: 10.1111/cbdd.12925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/27/2016] [Accepted: 12/11/2016] [Indexed: 12/16/2022]
Abstract
Biologically active natural products are spontaneous medicinal entrants, which encourage synthetic access for enhancing and supporting drug discovery and development. Marine bioactive peptides are considered as a rich source of natural products that may provide long-term health, in addition to many prophylactic and curative medicinal drug treatments. The large literature concerning marine peptides has been collected, which shows high potential of nutraceutical and therapeutic efficacy encompassing wide spectra of bioactivities against a number of infection-causing agents. Their antimicrobial, antimalarial, antitumor, antiviral, and cardioprotective actions have achieved the attention of the pharmaceutical industry toward new design of drug formulations, for treatment and prevention of several infections. However, the mechanism of action of many peptide molecules has been still untapped. So in this regard, this paper reviews several peptide compounds by which they interfere with human pathogenesis. This knowledge is one of the key tools to be understood especially for the biotransformation of biomolecules into targeted medicines. The fact that different diseases have the capability to fight at different sites inside the body can lead to a new wave of increasing the chances to produce targeted medicines.
Collapse
Affiliation(s)
- Komal Anjum
- Ocean College, Zhejiang University, Hangzhou, China
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University, D.I. Khan, Khyber-Pakhtunkhwa, Pakistan
| | | | - Bibi Ibtesam Shagufta
- Department of Zoology, Kohat University of Science and Technology (KUST), D.I. Khan, Khyber-Pakhtunkhwa, Pakistan
| | | | | |
Collapse
|
32
|
Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1300-1309. [PMID: 27668701 DOI: 10.1016/j.bbalip.2016.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
33
|
Silvers MA, Pakhomova S, Neau DB, Silvers WC, Anzalone N, Taylor CM, Waldrop GL. Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B. Biochemistry 2016; 55:4666-74. [PMID: 27471863 DOI: 10.1021/acs.biochem.6b00641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dramatic increase in the prevalence of antibiotic-resistant bacteria has necessitated a search for new antibacterial agents against novel targets. Moiramide B is a natural product, broad-spectrum antibiotic that inhibits the carboxyltransferase component of acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid synthesis. Herein, we report the 2.6 Å resolution crystal structure of moiramide B bound to carboxyltransferase. An unanticipated but significant finding was that moiramide B bound as the enol/enolate. Crystallographic studies demonstrate that the (4S)-methyl succinimide moiety interacts with the oxyanion holes of the enzyme, supporting the notion that an anionic enolate is the active form of the antibacterial agent. Structure-activity studies demonstrate that the unsaturated fatty acid tail of moiramide B is needed only for entry into the bacterial cell. These results will allow the design of new antibacterial agents against the bacterial form of carboxyltransferase.
Collapse
Affiliation(s)
| | | | - David B Neau
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - William C Silvers
- Department of Radiology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | |
Collapse
|
34
|
Di Iorio N, Champavert F, Erice A, Righi P, Mazzanti A, Bencivenni G. Targeting remote axial chirality control of N-(2-tert-butylphenyl)succinimides by means of Michael addition type reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Chen MY, Song T, Zheng ZJ, Xu Z, Cui YM, Xu LW. Tao-Phos-controlled desymmetrization of succinimide-based bisalkynes via asymmetric copper-catalyzed Huisgen alkyne–azide click cycloaddition: substrate scope and mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra13687g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
36
|
Silvers MA, Robertson GT, Taylor CM, Waldrop GL. Design, Synthesis, and Antibacterial Properties of Dual-Ligand Inhibitors of Acetyl-CoA Carboxylase. J Med Chem 2014; 57:8947-59. [DOI: 10.1021/jm501082n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Molly A. Silvers
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gregory T. Robertson
- Department
of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Carol M. Taylor
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Grover L. Waldrop
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
37
|
Pidot SJ, Coyne S, Kloss F, Hertweck C. Antibiotics from neglected bacterial sources. Int J Med Microbiol 2014; 304:14-22. [DOI: 10.1016/j.ijmm.2013.08.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Tsakos M, Kokotos CG. Primary and secondary amine-(thio)ureas and squaramides and their applications in asymmetric organocatalysis. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.080] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Zhao MX, Ji FH, Wei DK, Shi M. Chiral squaramides catalyzed diastereo- and enantioselective Michael addition of α-substituted isocyanoacetates to N-aryl maleimides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms. Appl Environ Microbiol 2013; 80:146-53. [PMID: 24141121 DOI: 10.1128/aem.02717-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution.
Collapse
|
41
|
Desriac F, Jégou C, Balnois E, Brillet B, Le Chevalier P, Fleury Y. Antimicrobial peptides from marine proteobacteria. Mar Drugs 2013; 11:3632-60. [PMID: 24084784 PMCID: PMC3826127 DOI: 10.3390/md11103632] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023] Open
Abstract
After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of "classical" antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.
Collapse
Affiliation(s)
- Florie Desriac
- University of Brest, LUBEM EA 3882, SFR 148, Quimper 29000, France.
| | | | | | | | | | | |
Collapse
|
42
|
Andrimid production at low temperature by a psychrotolerant Serratia proteamaculans strain. World J Microbiol Biotechnol 2013; 29:1773-81. [DOI: 10.1007/s11274-013-1338-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/24/2013] [Indexed: 12/29/2022]
|
43
|
Manna MS, Mukherjee S. Catalytic Asymmetric Direct Vinylogous Michael Addition of Deconjugated Butenolides to Maleimides for the Construction of Quaternary Stereogenic Centers. Chemistry 2012; 18:15277-82. [DOI: 10.1002/chem.201203180] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/11/2012] [Indexed: 11/06/2022]
|
44
|
Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Enantioselective Synthesis of Succinimides by Michael Addition of 1,3-Dicarbonyl Compounds to Maleimides Catalyzed by a Chiral Bis(2-aminobenzimidazole) Organocatalyst. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Bai JF, Wang LL, Peng L, Guo YL, Jia LN, Tian F, He GY, Xu XY, Wang LX. Asymmetric Michael Addition of α-Substituted Isocyanoacetates with Maleimides Catalyzed by Chiral Tertiary Amine Thiourea. J Org Chem 2012; 77:2947-53. [DOI: 10.1021/jo2025288] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Fei Bai
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Liang-Liang Wang
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Lin Peng
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun-Long Guo
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Li-Na Jia
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Fang Tian
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guang-Yun He
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric
Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute
of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
46
|
Mansson M, Nielsen A, Kjærulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine photobacterium. Mar Drugs 2011; 9:2537-2552. [PMID: 22363239 PMCID: PMC3280567 DOI: 10.3390/md9122537] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022] Open
Abstract
During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium.
Collapse
Affiliation(s)
- Maria Mansson
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Author to whom correspondence should be addressed; ; Tel.: +45-4525-2724; Fax: +45-4588-4148
| | - Anita Nielsen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (H.I.)
| | - Louise Kjærulff
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (L.K.); (C.H.G.)
| | - Charlotte H. Gotfredsen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (L.K.); (C.H.G.)
| | - Matthias Wietz
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (M.W.); (L.G.)
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (H.I.)
| | - Lone Gram
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (M.W.); (L.G.)
| | - Thomas O. Larsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
47
|
Ma ZW, Liu YX, Li PL, Ren H, Zhu Y, Tao JC. A highly efficient large-scale asymmetric Michael addition of isobutyraldehyde to maleimides promoted by a novel multifunctional thiourea. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Asymmetric Michael reactions of α,α-disubstituted aldehydes with maleimides using a primary amine thiourea organocatalyst. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Mansson M, Gram L, Larsen TO. Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 2011; 9:1440-1468. [PMID: 22131950 PMCID: PMC3225927 DOI: 10.3390/md9091440] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022] Open
Abstract
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.
Collapse
Affiliation(s)
- Maria Mansson
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Lone Gram
- National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Thomas O. Larsen
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| |
Collapse
|
50
|
Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol 2011; 14:544-9. [PMID: 21862391 DOI: 10.1016/j.mib.2011.07.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 11/30/2022]
Abstract
The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | | |
Collapse
|