1
|
Pulido D, Nogués MV, Boix E, Torrent M. Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J Innate Immun 2012; 4:327-36. [PMID: 22441679 DOI: 10.1159/000336713] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/20/2012] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) are nowadays understood as broad multifunctional tools of the innate immune system to fight microbial infections. In addition to its direct antimicrobial action, AMPs can modulate the host immune response by promoting or restraining the recruitment of cells and chemicals to the infection focus. Binding of AMPs to lipopolysaccharide is a critical step for both their antimicrobial action and their immunomodulatory properties. On the one hand, removal of Gram-negative bacteria by AMPs can be an effective strategy to prevent a worsened inflammatory response that may lead to septic shock. On the other hand, by neutralizing circulating endotoxins, AMPs can successfully reduce nitric oxide and tumor necrosis factor-α production, hence preventing severe tissue damage. Furthermore, AMPs can also interfere with the Toll-like receptor 4 recognition system, suppressing cytokine production and contributing to modulate the inflammatory response. Here, we review the immune system strategies devised by AMPs to avoid an exacerbated inflammatory response and thus prevent a fatal end to the host.
Collapse
Affiliation(s)
- David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
2
|
Nguyen TB, Kumar EVKS, Sil D, Wood SJ, Miller KA, Warshakoon HJ, Datta A, David SA. Controlling plasma protein binding: structural correlates of interactions of hydrophobic polyamine endotoxin sequestrants with human serum albumin. Mol Pharm 2009; 5:1131-7. [PMID: 19434925 DOI: 10.1021/mp8001123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophobically substituted polyamine compounds, particularly N-acyl or N-alkyl derivatives of homospermine, are potent endotoxin (lipopolysaccharide) sequestrants. Despite their polycationic nature, the aqueous solubilites are limited owing to the considerable overall hydrophobicity contributed by the long-chain aliphatic substituent, but solubilization is readily achieved in the presence of human serum albumin (HSA). We desired first to delineate the structural basis of lipopolyamine-albumin interactions and, second, to explore possible structure-activity correlates in a well-defined, congeneric series of N-alkyl and -acyl homospermine lead compounds. Fluorescence spectroscopic and isothermal titration calorimetry (ITC) results indicate that these compounds appear to bind to HSA via occupancy of the fatty-acid binding sites on the protein. The acyl and carbamate compounds bind HSA the strongest; the ureido and N-alkyl analogues are significantly weaker, and the branched alkyl compound is weaker still. ITC-derived dissociation constants are weighted almost in their entirety by enthalpic deltaH terms, which is suggestive that the polarizability of the carbonyl groups facilitate, at least in large part, their interactions with HSA. The relative affinities of these lipopolyamines toward HSA is reflected in discernible differences in apparent potencies of LPS-sequestering activity under experimental conditions requiring physiological concentrations of HSA, and also of in vivo pharmacodynamic behavior. These results are likely to be useful in designing analogues with varying pharmacokinetic profiles.
Collapse
Affiliation(s)
- Thuan B Nguyen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Structure-activity relationships of lipopolysaccharide sequestration in N-alkylpolyamines. Bioorg Med Chem Lett 2009; 19:2478-81. [PMID: 19332373 DOI: 10.1016/j.bmcl.2009.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/23/2022]
Abstract
We have previously shown that simple N-acyl or N-alkyl polyamines bind to and sequester Gram-negative bacterial lipopolysaccharide, affording protection against lethality in animal models of endotoxicosis. Several iterative design-and-test cycles of SAR studies, including high-throughput screens, had converged on compounds with polyamine scaffolds which have been investigated extensively with reference to the number, position, and length of acyl or alkyl appendages. However, the polyamine backbone itself had not been explored sufficiently, and it was not known if incremental variations on the polymethylene spacing would affect LPS-binding and neutralization properties. We have now systematically explored the relationship between variously elongated spermidine [NH(2)-(CH(2))(3)-NH-(CH(2))(4)-NH(2)] and norspermidine [NH(2)-(CH(2))(3)-NH-(CH(2))(3)-NH(2)] backbones, with the N-alkyl group being held constant at C(16) in order to examine if changing the spacing between the inner secondary amines may yield additional SAR information. We find that the norspermine-type compounds consistently showed higher activity compared to corresponding spermine homologues.
Collapse
|
4
|
Wu W, Sil D, Szostak ML, Malladi SS, Warshakoon HJ, Kimbrell MR, Cromer JR, David SA. Structure-activity relationships of lipopolysaccharide sequestration in guanylhydrazone-bearing lipopolyamines. Bioorg Med Chem 2009; 17:709-15. [PMID: 19064323 PMCID: PMC3702171 DOI: 10.1016/j.bmc.2008.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/15/2008] [Accepted: 11/18/2008] [Indexed: 11/17/2022]
Abstract
The toxicity of gram-negative bacterial endotoxin (lipopolysaccharide, LPS) resides in its structurally highly conserved glycolipid component called lipid A. Our major goal has been to develop small-molecules that would sequester LPS by binding to the lipid A moiety, so that it could be useful for the prophylaxis or adjunctive therapy of gram-negative sepsis. We had previously identified in rapid-throughput screens several guanylhydrazones as potent LPS binders. We were desirous of examining if the presence of the guanylhydrazone (rather than an amine) functionality would afford greater LPS sequestration potency. In evaluating a congeneric set of guanylhydrazone analogues, we find that C(16) alkyl substitution is optimal in the N-alkylguanylhydrazone series; a homospermine analogue with the terminal amine N-alkylated with a C(16) chain with the other terminus of the molecule bearing an unsubstituted guanylhydrazone moiety is marginally more active, suggesting very slight, if any, steric effects. Neither C(16) analogue is significantly more active than the N-C(16)-alkyl or N-C(16)-acyl compounds that we had characterized earlier, indicating that basicity of the phosphate-recognizing cationic group, is not a determinant of LPS sequestration activity.
Collapse
Affiliation(s)
- Wenyan Wu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Michal L. Szostak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | | | | | | | - Jens R. Cromer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
5
|
Nussio MR, Sykes MJ, Miners JO, Shapter JG. Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2008; 2:366-73. [PMID: 17191292 DOI: 10.1002/cmdc.200600252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interactions of three cationic amphiphilic drugs (CPZ, AMI, PROP) with phospholipid vesicles comprising DOPC, DMPC, or DSPC were investigated using surface plasmon resonance (SPR). Responses for CAD concentrations in the range 15.625 to 1500 microM were measured. The greatest uptake by each phospholipid bilayer occurred with CPZ. Inclusion of CAD concentrations between 750 and 1500 microM provided evidence for a second nonsaturable binding process, which may arise from intercalation of the drugs within the lipid bilayer. CAD binding was additionally shown to be dependent on membrane fluidity. Responses were initially fitted over a concentration range of 15.625 to 500 microM using a model which incorporated terms for a saturable binding site. This yielded very poor values of K(D) and nonsensible values of saturation responses. Subsequently, responses were fit to the expression for a model which incorporated terms for both a saturable binding site and second nonsaturable site. Measurable binding affinities (K(D) values ranged from 170 to 814 microM) were obtained for DOPC and DMPC bilayers which are similar to values reported previously. This work demonstrates that SPR studies with synthetic phospholipid bilayers provide a potentially useful approach for characterising drug-membrane binding interactions and for providing insight into the processes that contribute to drug-membrane binding.
Collapse
Affiliation(s)
- Matthew R Nussio
- School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5001, Australia
| | | | | | | |
Collapse
|
6
|
Naberezhnykh GA, Gorbach VI, Likhatskaya GN, Davidova VN, Solov’eva TF. Interaction of chitosans and their N-acylated derivatives with lipopolysaccharide of gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2008; 73:432-41. [DOI: 10.1134/s0006297908040081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Nguyen TB, Adisechan AK, Suresh Kumar EVK, Balakrishna R, Kimbrell MR, Miller KA, Datta A, David SA. Protection from endotoxic shock by EVK-203, a novel alkylpolyamine sequestrant of lipopolysaccharide. Bioorg Med Chem 2007; 15:5694-709. [PMID: 17583517 PMCID: PMC2039869 DOI: 10.1016/j.bmc.2007.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 11/20/2022]
Abstract
Lipopolysaccharides (LPS) play a key role in the pathogenesis of septic shock, a major cause of mortality in the critically ill patient. The only therapeutic option aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide is Toraymyxin, an extracorporeal hemoperfusion device using solid phase-immobilized polymyxin B (PMB). While PMB is known to effectively sequester LPS, its severe systemic toxicity proscribes its parenteral use, and hemoperfusion may not be feasible in patients in shock. In our continuing efforts to develop small-molecule mimics which display the LPS-sequestering properties, but not the toxicity of PMB, a series of mono- and bis-substituted dialkylpolyamines were synthesized and evaluated. We show that EVK-203, an alkylpolyamine compound, specifically binds to and neutralizes the activity of LPS, and affords complete protection in a murine model of endotoxic shock. EVK-203 is without any apparent toxicity when administered to mice at multiples of therapeutic doses for several days. The specific endotoxin-sequestering property along with a very favorable therapeutic index renders this compound an ideal candidate for preclinical development.
Collapse
Affiliation(s)
- Thuan B Nguyen
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Lawrence, KS 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sil D, Shrestha A, Kimbrell MR, Nguyen TB, Adisechan AK, Balakrishna R, Abbo BG, Malladi S, Miller KA, Short S, Cromer JR, Arora S, Datta A, David SA. Bound to shock: protection from lethal endotoxemic shock by a novel, nontoxic, alkylpolyamine lipopolysaccharide sequestrant. Antimicrob Agents Chemother 2007; 51:2811-9. [PMID: 17548488 PMCID: PMC1932507 DOI: 10.1128/aac.00200-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes. Polymyxin B (PMB), a peptide antibiotic, is a prototype small molecule that binds and neutralizes LPS toxicity. However, the antibiotic is too toxic for systemic use as an LPS sequestrant. Based on a nuclear magnetic resonance-derived model of polymyxin B-LPS complex, we had earlier identified the pharmacophore necessary for optimal recognition and neutralization of the toxin. Iterative cycles of pharmacophore-based ligand design and evaluation have yielded a synthetically easily accessible N(1),mono-alkyl-mono-homologated spermine derivative, DS-96. We have found that DS-96 binds LPS and neutralizes its toxicity with a potency indistinguishable from that of PMB in a wide range of in vitro assays, affords complete protection in a murine model of LPS-induced lethality, and is apparently nontoxic in vertebrate animal models.
Collapse
Affiliation(s)
- Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Lawrence, KS 66047, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Burns MR, Jenkins SA, Vermeulen NM, Balakrishna R, Nguyen TB, Kimbrell MR, David SA. Structural correlation between lipophilicity and lipopolysaccharide-sequestering activity in spermine-sulfonamide analogs. Bioorg Med Chem Lett 2006; 16:6209-12. [PMID: 17010608 PMCID: PMC1991285 DOI: 10.1016/j.bmcl.2006.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize this complex carbohydrate. A series of aryl and aliphatic spermine-sulfonamide analogs were synthesized and tested in a series of binding and cell-based assays in order to probe the effect of lipophilicity on sequestration ability. A strong correlation was indeed found, supporting the hypothesis that endotoxin-neutralizing ability involves a lipophilic or membrane attachment event. The research discussed herein may be useful for the design of additional carbohydrate recognizing molecules and endotoxin-neutralizing drugs.
Collapse
Affiliation(s)
- Mark R Burns
- MediQuest Therapeutics, Inc., 22322 20th Ave. SE, Bothell, WA 98021, USA
| | | | | | | | | | | | | |
Collapse
|