1
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
2
|
Hossain MI, Myers M, Herath D, Aldhumani AH, Boesger H, Hines JV. 4-Aminoquinolines modulate RNA structure and function: Pharmacophore implications of a conformationally restricted polyamine. Biochem Biophys Res Commun 2023; 644:55-61. [PMID: 36630735 PMCID: PMC10473465 DOI: 10.1016/j.bbrc.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Danushika Herath
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
3
|
Haga CL, Phinney DG. Strategies for targeting RNA with small molecule drugs. Expert Opin Drug Discov 2023; 18:135-147. [PMID: 35934990 DOI: 10.1080/17460441.2022.2111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Historically, therapeutic treatment of disease has been restricted to targeting proteins. Of the approximately 20,000 translated human proteins, approximately 1600 are associated with diseases. Strikingly, less than 15% of disease-associated proteins are predicted or known to be 'druggable.' While the concept and narrative of protein druggability continue to evolve with the development of novel technological and pharmacological advances, most of the human proteome remains undrugged. Recent genomic studies indicate that less than 2% of the human genome encodes for proteins, and while as much as 75% of the genome is transcribed, RNA has largely been ignored as a druggable target for therapeutic interventions. AREAS COVERED This review delineates the theory and techniques involved in the development of small molecule inhibitors of RNAs from brute force, high-throughput screening technologies to de novo molecular design using computational machine and deep learning. We will also highlight the potential pitfalls and limitations of targeting RNA with small molecules. EXPERT OPINION Although significant advances have recently been made in developing systems to identify small molecule inhibitors of RNAs, many challenges remain. Focusing on RNA structure and ligand binding sites may help bring drugging RNA in line with traditional protein drug targeting.
Collapse
Affiliation(s)
- Christopher L Haga
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Donald G Phinney
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| |
Collapse
|
4
|
Seyler TM, Moore C, Kim H, Ramachandran S, Agris PF. A New Promising Anti-Infective Agent Inhibits Biofilm Growth by Targeting Simultaneously a Conserved RNA Function That Controls Multiple Genes. Antibiotics (Basel) 2021; 10:41. [PMID: 33406640 PMCID: PMC7824582 DOI: 10.3390/antibiotics10010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Combating single and multi-drug-resistant infections in the form of biofilms is an immediate challenge. The challenge is to discover innovative targets and develop novel chemistries that combat biofilms and drug-resistant organisms, and thwart emergence of future resistant strains. An ideal novel target would control multiple genes, and can be inhibited by a single compound. We previously demonstrated success against Staphylococcus aureus biofilms by targeting the tRNA-dependent regulated T-box genes, not present in the human host. Present in Gram-positive bacteria, T-box genes attenuate transcription with a riboswitch-like element that regulates the expression of aminoacyl-tRNA synthetases and amino acid metabolism genes required for cell viability. PKZ18, the parent of a family of compounds selected in silico from 305,000 molecules, inhibits the function of the conserved T-box regulatory element and thus blocks growth of antibiotic-resistant S. aureus in biofilms. The PKZ18 analog PKZ18-22 was 10-fold more potent than vancomycin in inhibiting growth of S. aureus in biofilms. In addition, PKZ18-22 has a synergistic effect with existing antibiotics, e.g., gentamicin and rifampin. PKZ18-22 inhibits the T-box regulatory mechanism, halts the transcription of vital genes, and results in cell death. These effects are independent of the growth state, planktonic or biofilm, of the bacteria, and could inhibit emergent strains.
Collapse
Affiliation(s)
- Thorsten M. Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 277010, USA;
| | - Christina Moore
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 277010, USA;
| | - Haein Kim
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| | - Sheetal Ramachandran
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| | - Paul F. Agris
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| |
Collapse
|
5
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Small-Molecule Antibiotics Inhibiting tRNA-Regulated Gene Expression Is a Viable Strategy for Targeting Gram-Positive Bacteria. Antimicrob Agents Chemother 2020; 65:AAC.01247-20. [PMID: 33077662 PMCID: PMC7927825 DOI: 10.1128/aac.01247-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections and the rise of antibiotic resistance, especially multidrug resistance, have generated a clear need for discovery of novel therapeutics. We demonstrated that a small-molecule drug, PKZ18, targets the T-box mechanism and inhibits bacterial growth. The T-box is a structurally conserved riboswitch-like gene regulator in the 5' untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of an antiterminator hairpin in the mRNA that enables transcription of the gene. In the absence of an unacylated cognate tRNA, transcription is halted due to the formation of a thermodynamically more stable terminator hairpin. PKZ18 targets the site of the codon-anticodon interaction of the conserved stem I and reduces T-box-controlled gene expression. Here, we show that novel analogs of PKZ18 have improved MICs, bactericidal effects against methicillin-resistant Staphylococcus aureus (MRSA), and increased efficacy in nutrient-limiting conditions. The analogs have reduced cytotoxicity against eukaryotic cells compared to PKZ18. The PKZ18 analogs acted synergistically with aminoglycosides to significantly enhance the efficacy of the analogs and aminoglycosides, further increasing their therapeutic windows. RNA sequencing showed that the analog PKZ18-22 affects expression of 8 of 12 T-box controlled genes in a statistically significant manner, but not other 5'-UTR regulated genes in MRSA. Very low levels of resistance further support the existence of multiple T-box targets for PKZ18 analogs in the cell. Together, the multiple targets, low resistance, and synergy make PKZ18 analogs promising drugs for development and future clinical applications.
Collapse
|
7
|
Abstract
The structural and regulatory elements in therapeutically relevant RNAs offer many opportunities for targeting by small molecules, yet fundamental understanding of what drives selectivity in small molecule:RNA recognition has been a recurrent challenge. In particular, RNAs tend to be more dynamic and offer less chemical functionality than proteins, and biologically active ligands must compete with the highly abundant and highly structured RNA of the ribosome. Indeed, the only small molecule drug targeting RNA other than the ribosome was just approved in August 2020, and our recent survey of the literature revealed fewer than 150 reported chemical probes that target non-ribosomal RNA in biological systems. This Feature outlines our efforts to improve small molecule targeting strategies and gain fundamental insights into small molecule:RNA recognition by analyzing patterns in both RNA-biased small molecule chemical space and RNA topological space privileged for differentiation. First, we synthesized libraries based on RNA binding scaffolds that allowed us to reveal general principles in small molecule:recognition and to ask precise chemical questions about drivers of affinity and selectivity. Elaboration of these scaffolds has led to recognition of medicinally relevant RNA targets, including viral and long noncoding RNA structures. More globally, we identified physicochemical, structural, and spatial properties of biologically active RNA ligands that are distinct from those of protein-targeted ligands, and we have provided the dataset and associated analytical tools as part of a publicly available online platform to facilitate RNA ligand discovery. At the same time, we used pattern recognition protocols to identify RNA topologies that can be differentially recognized by small molecules and have elaborated this technique to visualize conformational changes in RNA secondary structure. These fundamental insights into the drivers of RNA recognition in vitro have led to functional targeting of RNA structures in biological systems. We hope that these initial guiding principles, as well as the approaches and assays developed in their pursuit, will enable rapid progress toward the development of RNA-targeted chemical probes and ultimately new therapeutic approaches to a wide range of deadly human diseases.
Collapse
Affiliation(s)
- Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Jednačak T, Majerić Elenkov M, Hrenar T, Sović K, Parlov Vuković J, Novak P. Solution and solid state studies of hydrogen bonding in substituted oxazolidinones by spectroscopic and quantum chemical methods. NEW J CHEM 2020. [DOI: 10.1039/c9nj06349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive oxazolidinones formed dimers in chloroform and solid state; in more polar solvents, hydrogen bonds with solvent molecules were observed.
Collapse
Affiliation(s)
- Tomislav Jednačak
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | | | - Tomica Hrenar
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | - Karlo Sović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | | | - Predrag Novak
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| |
Collapse
|
9
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Wang TL, Qi HT, Wang XC, Quan ZJ. Iodine-catalyzed direct allylation of chiral oxazolidinones by the amide-aldehyde-alkene condensation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Stamatopoulou V, Apostolidi M, Li S, Lamprinou K, Papakyriakou A, Zhang J, Stathopoulos C. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Res 2017; 45:10242-10258. [PMID: 28973457 PMCID: PMC5622331 DOI: 10.1093/nar/gkx663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 11/14/2022] Open
Abstract
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators.
Collapse
Affiliation(s)
| | - Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Katerina Lamprinou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
12
|
RNA as a small molecule druggable target. Bioorg Med Chem Lett 2017; 27:5083-5088. [PMID: 29097169 DOI: 10.1016/j.bmcl.2017.10.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022]
Abstract
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.
Collapse
|
13
|
Patwardhan NN, Ganser LR, Kapral GJ, Eubanks CS, Lee J, Sathyamoorthy B, Al-Hashimi HM, Hargrove AE. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MEDCHEMCOMM 2017; 8:1022-1036. [PMID: 28798862 PMCID: PMC5546750 DOI: 10.1039/c6md00729e] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 12/23/2022]
Abstract
Diversification of RNA-targeted scaffolds offers great promise in the search for selective ligands of therapeutically relevant RNA such as HIV-1 TAR. We herein report the establishment of amiloride as a novel RNA-binding scaffold along with synthetic routes for combinatorial C(5)- and C(6)-diversification. Iterative modifications at the C(5)- and C(6)- positions yielded derivative 24, which demonstrated a 100-fold increase in activity over the parent dimethylamiloride in peptide displacement assays. NMR chemical shift mapping was performed using the 2D SOFAST- [1H-13C] HMQC NMR method, which allowed for facile and rapid evaluation of binding modes for all library members. Cheminformatic analysis revealed distinct differences between selective and non-selective ligands. In this study, we evolved dimethylamiloride from a weak TAR ligand to one of the tightest binding selective TAR ligands reported to date through a novel combination of synthetic methods and analytical techniques. We expect these methods to allow for rapid library expansion and tuning of the amiloride scaffold for a range of RNA targets and for SOFAST NMR to allow unprecedented evaluation of small molecule:RNA interactions.
Collapse
Affiliation(s)
- Neeraj N. Patwardhan
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Laura R. Ganser
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Gary J. Kapral
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Christopher S. Eubanks
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Janghyun Lee
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Bharathwaj Sathyamoorthy
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Hashim M. Al-Hashimi
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Amanda E. Hargrove
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| |
Collapse
|
14
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
15
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
C. Bergmeier S, Fang F, Maciagiewicz I. A Synthesis of Hexahydro-H-oxazolo[3,4-a]pyrazin-3-ones from Fused Aziridines. HETEROCYCLES 2016. [DOI: 10.3987/com-15-s(t)24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
18
|
Abstract
The T box riboswitch is an intriguing potential target for antibacterial drug discovery. Found primarily in Gram-positive bacteria, the riboswitch regulates gene expression by selectively responding to uncharged tRNA to control transcription readthrough. Polyamines and molecular crowding are known to specifically affect RNA function, but their effect on T box riboswitch efficacy and tRNA affinity have not been fully characterized. A fluorescence-monitored in vitro transcription assay was developed to readily quantify these molecular interactions and to provide a moderate-throughput functional assay for a comprehensive drug discovery screening cascade. The polyamine spermidine specifically enhanced T box riboswitch readthrough efficacy with an EC50 = 0.58 mM independent of tRNA binding. Molecular crowding, simulated by the addition of polyethylene glycol, had no effect on tRNA affinity for the riboswitch, but did reduce the efficacy of tRNA-induced readthrough. These results indicate that the T box riboswitch tRNA affinity and readthrough efficacy are intricately modulated by environmental factors.
Collapse
|
19
|
Kennedy MD, Bailey SJ, Wales SM, Keller PA. Enantiopure Trans-4,5-Disubstituted 2-Imidazolidinones via Copper(I)-Catalyzed Ring Opening of 1,1′-DiBoc-2,2′-Biaziridine with Grignard Reagents. J Org Chem 2015; 80:5992-8. [DOI: 10.1021/acs.joc.5b00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Kennedy
- School
of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen J. Bailey
- School
of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Steven M. Wales
- School
of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul A. Keller
- School
of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
20
|
Fluorescence assays for monitoring RNA-ligand interactions and riboswitch-targeted drug discovery screening. Methods Enzymol 2014; 550:363-83. [PMID: 25605395 DOI: 10.1016/bs.mie.2014.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboswitches and other noncoding regulatory RNA are intriguing targets for the development of therapeutic agents. A significant challenge in the drug discovery process, however, is the identification of potent compounds that bind the target RNA specifically and disrupt its function. Essential to this process is an effectively designed cascade of screening assays. A screening cascade for identifying compounds that target the T box riboswitch antiterminator element is described. In the primary assays, moderate to higher throughput screening of compound libraries is achieved by combining the sensitivity of fluorescence techniques with functionally relevant assays. Active compounds are then validated and the binding to target RNA further characterized in secondary assays. The cascade of assays monitor ligand-induced changes in the steady-state fluorescence of an attached dye or internally incorporated 2-aminopurine; the fluorescence anisotropy of an RNA complex; and, the thermal denaturation fluorescence profile of a fluorophore-quencher labeled RNA. While the assays described have been developed for T box riboswitch-targeted drug discovery, the fluorescence methods and screening cascade design principles can be applied to drug discovery efforts targeted toward other medicinally relevant noncoding RNA.
Collapse
|
21
|
Henkin TM. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:959-963. [PMID: 24816551 DOI: 10.1016/j.bbagrm.2014.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Kaur D, Sharma R. Insight into the acidic behavior of oxazolidin-2-one, its thione and selone analogs through computational techniques. Struct Chem 2013. [DOI: 10.1007/s11224-013-0382-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Studies on the ring opening reactions of 3-oxa-1-azabicyclo[3.1.0]hexan-2-ones. Synthesis of aminomethyl oxazolidinones and aziridinyl ureas. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Jentzsch F, Hines JV. Interfacing medicinal chemistry with structural bioinformatics: implications for T box riboswitch RNA drug discovery. BMC Bioinformatics 2012; 13 Suppl 2:S5. [PMID: 22536868 PMCID: PMC3375634 DOI: 10.1186/1471-2105-13-s2-s5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The T box riboswitch controls bacterial transcription by structurally responding to tRNA aminoacylation charging ratios. Knowledge of the thermodynamic stability difference between two competing structural elements within the riboswitch, the terminator and the antiterminator, is critical for effective T box-targeted drug discovery. Methods The ΔG of aminoacyl tRNA synthetase (aaRS) T box riboswitch terminators and antiterminators was predicted using DINAMelt and the resulting ΔΔG (ΔGTerminator - ΔGAntiterminator) values were compared. Results Average ΔΔG values did not differ significantly between the bacterial species analyzed, but there were significant differences based on the type of aaRS. Conclusions The data indicate that, of the bacteria studied, there is little potential for drug targeting based on overall bacteria-specific thermodynamic differences of the T box antiterminator vs. terminator stability, but that aaRS-specific thermodynamic differences could possibly be exploited for designing drug specificity.
Collapse
|
25
|
Fang F, Vogel M, Hines JV, Bergmeier SC. Fused ring aziridines as a facile entry into triazole fused tricyclic and bicyclic heterocycles. Org Biomol Chem 2012; 10:3080-91. [DOI: 10.1039/c2ob07042a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zhou S, Acquaah-Harrison G, Jack KD, Bergmeier SC, Hines JV. Ligand-induced changes in T box antiterminator RNA stability. Chem Biol Drug Des 2011; 79:202-8. [PMID: 22117759 DOI: 10.1111/j.1747-0285.2011.01274.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The T box antiterminator RNA element is an important component of the T box riboswitch that controls the transcription of vital genes in many Gram-positive bacteria. A series of 1,4-disubstituted 1,2,3-triazoles was screened in a fluorescence-monitored thermal denaturation assay to identify ligands that altered the stability of antiterminator model RNA. Several ligands were identified that significantly increased or decreased the melting temperature (T(m) ) of the RNA. The results indicate that this series of triazole ligands can alter the stability of antiterminator model RNA in a structure-dependent manner.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | |
Collapse
|
27
|
Deigan KE, FerrÉ-D’AmarÉ AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 2011; 44:1329-38. [PMID: 21615107 DOI: 10.1021/ar200039b] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboswitches are messenger RNA (mRNA) domains that regulate gene function in response to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, thus representing an inviting new class of biomolecular target for the development of antibiotics and chemical-biological tools. In this Account, we briefly review the discovery of riboswitches in the first years of the 21st century and their ensuing characterization over the past decade. We then discuss the progress achieved so far in using riboswitches as a focus for drug discovery, considering both the value of past serendipity and the particular challenges that confront current researchers. Five mechanisms of gene regulation have been determined for riboswitches. Most bacterial riboswitches modulate either transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches, and some bacterial riboswitches, control gene expression by alternative splicing. The glmS riboswitch, which is widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding: its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of a trans-acting riboswitch is known. Three-dimensional structures have been determined for representatives of 13 structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs have attracted widespread interest as potential drug targets, riboswitches show special promise due to the diversity of small-molecule recognition strategies that are on display in their ligand-binding pockets. Moreover, riboswitches have evolved to recognize small-molecule ligands, which is unique among known structured RNA domains. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment-based screening approach employing equilibrium dialysis that may be generically useful has demonstrated early success. Riboswitch-mediated gene regulation is widely employed by bacteria; however, only the thiamine pyrophosphate-responsive riboswitch has thus far been found in eukaryotes. Thus, riboswitches are particularly attractive as targets for antibacterials. Indeed, antimicrobials with previously unknown mechanisms have been found to function by binding riboswitches and causing aberrant gene expression.
Collapse
Affiliation(s)
- Katherine E. Deigan
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adrian R. FerrÉ-D’AmarÉ
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
| |
Collapse
|
28
|
Zhou S, Means JA, Acquaah-Harrison G, Bergmeier SC, Hines JV. Characterization of a 1,4-disubstituted 1,2,3-triazole binding to T box antiterminator RNA. Bioorg Med Chem 2011; 20:1298-302. [PMID: 22230198 DOI: 10.1016/j.bmc.2011.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
Abstract
The T box riboswitch regulates the transcription of many bacterial genes by structurally responding to cognate non-aminoacylated (uncharged) tRNA. The riboswitch contains multiple conserved RNA elements including a key structural element, the antiterminator, which binds the tRNA acceptor end nucleotides. Previous studies identified a lead 1,4-disubstituted 1,2,3-triazole, GHB-7, that disrupted formation of a tRNA-antiterminator RNA model complex. The affinity and molecular interactions of GHB-7 binding to antiterminator model RNA were characterized as part of a comprehensive T box antiterminator RNA-targeted drug discovery project. In-line probing, UV-monitored thermal denaturation and docking studies all consistently indicated that GHB-7 likely binds to the bulge region of the antiterminator, reduces the flexibility of the bulge nucleotides and, overall, stabilizes the RNA secondary structure. These results begin to elucidate possible mechanisms for ligand-induced inhibition of tRNA binding to T box antiterminator RNA and contribute to the knowledge of how small molecules bind relatively simple RNA structural elements such as bulges.
Collapse
Affiliation(s)
- S Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | |
Collapse
|
29
|
Zhou S, Acquaah-Harrison G, Bergmeier SC, Hines JV. Anisotropy studies of tRNA-T box antiterminator RNA complex in the presence of 1,4-disubstituted 1,2,3-triazoles. Bioorg Med Chem Lett 2011; 21:7059-63. [PMID: 22001091 DOI: 10.1016/j.bmcl.2011.09.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
The binding of tRNA to the T box antiterminator RNA element is a critical component of the T box riboswitch mechanism that regulates essential genes in many Gram-positive bacteria. A series of 1,4-disubstituted 1,2,3-triazoles was screened for disruption of the tRNA-T box antiterminator RNA interaction using a fluorescence anisotropy-based assay. Several compounds reduced the anisotropy greater than 50% likely indicating significant competition for binding antiterminator RNA. General structure-activity trends indicated that the substituents at both N-1 and C-4 likely are involved in ligand binding. In addition, the anisotropy of the complex was significantly decreased not only by ligands with the possibility for electrostatic interactions with the RNA, but also by ligands with the potential for π-π stacking or other hydrophobic interactions indicating that these non-electrostatic interactions could possibly be utilized in the future development of compounds that target and disrupt the function of this medicinally important riboswitch.
Collapse
Affiliation(s)
- S Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | | | | | | |
Collapse
|
30
|
Orac CM, Zhou S, Means JA, Boehm D, Bergmeier SC, Hines JV. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA. J Med Chem 2011; 54:6786-95. [PMID: 21812425 DOI: 10.1021/jm2006904] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Collapse
Affiliation(s)
- Crina M Orac
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | | | | | | | | | | |
Collapse
|
31
|
Maciagiewicz I, Zhou S, Bergmeier SC, Hines JV. Structure-activity studies of RNA-binding oxazolidinone derivatives. Bioorg Med Chem Lett 2011; 21:4524-7. [PMID: 21733684 DOI: 10.1016/j.bmcl.2011.05.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
The structure-activity relationship of a series of oxazolidinones binding to T-box riboswitch antiterminator RNA has been investigated. Oxazolidinones differentially substituted at C-5 were prepared and the ligand-induced fluorescence resonance energy transfer (FRET) changes in FRET-labeled antiterminator model RNA were assayed. Both qualitative and quantitative analysis of the structure-activity relationship indicate that hydrogen bonding and hydrophobic properties play a significant role in ligand binding.
Collapse
Affiliation(s)
- Iwona Maciagiewicz
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
32
|
Acquaah-Harrison G, Zhou S, Hines JV, Bergmeier SC. Library of 1,4-disubstituted 1,2,3-triazole analogs of oxazolidinone RNA-binding agents. ACTA ACUST UNITED AC 2010; 12:491-6. [PMID: 20557032 DOI: 10.1021/cc100029y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and synthesis of small molecules that target RNA is immensely important in antibacterial therapy. We had previously reported on the RNA binding of a series of 4,5-disubstituted 2-oxazolidinones that bind to a highly conserved bulge region of bacterial RNA. This biological target T box antitermination system, which is found mainly in Gram-positive bacteria, regulates the expression of several amino acid related genes. In an effort to amplify our library, we have prepared a library of 1,4-disubstituted 1,2,3-triazole analogs that entails an isosteric replacement of the oxazolidinone nucleus. The synthesis of the new analogs was enhanced via copper(I) catalysis of an azide and alkyne cycloaddition reaction. A total of 108 1,4-disubstituted 1,2,3-triazole compounds have been prepared. All compounds were evaluated as RNA binding agents.
Collapse
|
33
|
Chen L, Wang JW, Hai L, Wang GM, Wu Y. Design and Synthesis of Novel 5-Acetylthiomethyl Oxazolidinone Analogs. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910902756197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Cunico W, Gomes CRB, Tiekink ERT, Vellasco Junior WT, Wardell JL, Wardell SMSV. (4-Benzyl-2-oxo-1,3-oxazolidin-5-yl)methyl methane-sulfonate. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o267-8. [PMID: 21579707 PMCID: PMC2979937 DOI: 10.1107/s1600536809055020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 11/11/2022]
Abstract
The title compound, C(12)H(15)NO(5)S, features an approximately planar five-membered oxazolidin ring (r.m.s. deviation = 0.045 Å) with the peripheral benzyl and methyl methane-sulfonate residues lying to either side of the plane. In the crystal, N-H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supra-molecular chains along the b axis. These chains are reinforced by C-H⋯O contacts with the carbonyl O atom accepting three such inter-actions. The structure was refined as a racemic twin, with the major component being present 89% of the time.
Collapse
|
35
|
Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 2009; 584:318-24. [PMID: 19932103 DOI: 10.1016/j.febslet.2009.11.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA.
Collapse
Affiliation(s)
- Nicholas J Green
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
36
|
Means JA, Simson CM, Zhou S, Rachford AA, Rack JJ, Hines JV. Fluorescence probing of T box antiterminator RNA: insights into riboswitch discernment of the tRNA discriminator base. Biochem Biophys Res Commun 2009; 389:616-21. [PMID: 19755116 DOI: 10.1016/j.bbrc.2009.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg(2+) plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced-fit. This binding is enhanced by the presence of Mg(2+), facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chirayil S, Chirayil R, Luebke KJ. Discovering ligands for a microRNA precursor with peptoid microarrays. Nucleic Acids Res 2009; 37:5486-97. [PMID: 19561197 PMCID: PMC2760809 DOI: 10.1093/nar/gkp549] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have screened peptoid microarrays to identify specific ligands for the RNA hairpin precursor of miR-21, a microRNA involved in cancer and heart disease. Microarrays were printed by spotting a library of 7680 N-substituted oligoglycines (peptoids) onto glass slides. Two compounds on the array specifically bind RNA having the sequence and predicted secondary structure of the miR-21 precursor hairpin and have specific affinity for the target in solution. Their binding induces a conformational change around the hairpin loop, and the most specific compound recognizes the loop sequence and a bulged uridine in the proximal duplex. Functional groups contributing affinity and specificity were identified, and by varying a critical methylpyridine group, a compound with a dissociation constant of 1.9 μM for the miR-21 precursor hairpin and a 20-fold discrimination against a closely-related hairpin was created. This work describes a systematic approach to discovery of ligands for specific pre-defined novel RNA structures. It demonstrates discovery of new ligands for an RNA for which no specific lead compounds were previously known by screening a microarray of small molecules.
Collapse
Affiliation(s)
- Sara Chirayil
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9185, USA
| | | | | |
Collapse
|
38
|
Song L, Chen X, Zhang S, Zhang H, Li P, Luo G, Liu W, Duan W, Wang W. An Organocatalytic Approach to the Construction of Chiral Oxazolidinone Rings and Application in the Synthesis of Antibiotic Linezolid and Its Analogues. Org Lett 2008; 10:5489-92. [DOI: 10.1021/ol802333n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lirong Song
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Xiaobei Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Shilei Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Haoyi Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Ping Li
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Guangshun Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Wenjing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Wenhu Duan
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, People’s Republic of China, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, and Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001
| |
Collapse
|
39
|
Anupam R, Nayek A, Green NJ, Grundy FJ, Henkin TM, Means JA, Bergmeier SC, Hines JV. 4,5-Disubstituted oxazolidinones: High affinity molecular effectors of RNA function. Bioorg Med Chem Lett 2008; 18:3541-4. [PMID: 18502126 DOI: 10.1016/j.bmcl.2008.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
The T box transcription antitermination system is a riboswitch found primarily in Gram-positive bacteria which monitors the aminoacylation of the cognate tRNA and regulates a variety of amino acid-related genes. Novel 4,5-disubstituted oxazolidinones were identified as high affinity RNA molecular effectors that modulate the transcription antitermination function of the T box riboswitch.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
41
|
A Practical Gold-Catalyzed Route to 4-Substituted Oxazolidin-2-ones fromN-Boc Propargylamines. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700210] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Means JA, Wolf S, Agyeman A, Burton JS, Simson CM, Hines JV. T box riboswitch antiterminator affinity modulated by tRNA structural elements. Chem Biol Drug Des 2007; 69:139-45. [PMID: 17381728 DOI: 10.1111/j.1747-0285.2007.00476.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique RNA-RNA interaction occurs between uncharged tRNA and the untranslated mRNA leader region of bacterial T box genes. The interaction results in activation of a transcriptional antitermination molecular switch (riboswitch) by stabilizing an antiterminator RNA element and precluding formation of a competing transcriptional terminator RNA element. The stabilization requires the base pairing of cognate tRNA acceptor end nucleotides with the antiterminator. To develop an appropriate model system for detailed structural studies and to screen for small molecule disruption of this important RNA-RNA interaction, steady-state fluorescence measurements of antiterminator model RNAs were used to determine the dissociation constant for model tRNA binding. The antiterminator-binding affinity for the full, minihelix, microhelix, and tetramer tRNA models differed by orders of magnitude. In addition, not all of the tRNA models exhibited functionally relevant binding specificity. The results from these experiments highlight the importance of looking beyond the level of known base pairing interactions when designing functionally relevant models of riboswitch systems.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|