1
|
Abd El-Hameed RH, Sayed AI, Mahmoud Ali S, Mosa MA, Khoder ZM, Fatahala SS. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J Enzyme Inhib Med Chem 2021; 36:2183-2198. [PMID: 34602000 PMCID: PMC8491725 DOI: 10.1080/14756366.2021.1984904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Pyrroles and its fused forms possess antimicrobial activities, they can easily interact with biomolecules of living systems. A series of substituted pyrroles, and its fused pyrimidines and triazines forms have been synthesised, all newly synthesised compound structures were confirmed by spectroscopic analysis. Generally, the compounds inhibited growth of some important human pathogens, the best effect was given by: 2a, 3c, 4d on Gram-positive bacteria and was higher on yeast (C. albicans), by 5c on Gram-negative bacteria and by 5a then 3c on filamentous fungi (A. fumigatus and F. oxysporum). Such results present good antibacterial and antifungal potential candidates to help overcome the global problem of antibiotic resistance and opportunistic infections outbreak. Compound 3c gave the best anti-phytopathogenic effect at a 50-fold lower concentration than Kocide 2000, introducing a safe commercial candidate for agricultural use. The effect of the compounds on DNA was monitored to detect the mode of action.
Collapse
Affiliation(s)
- Rania Helmy Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Amira Ibrahim Sayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Shima Mahmoud Ali
- Department of Chemistry, The state University of New York at Buffalo, New York, NY, USA
| | - Mohamed A. Mosa
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Zainab M. Khoder
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samar Said Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| |
Collapse
|
2
|
Abstract
The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
4
|
Diketene a Privileged Synthon in the Synthesis of Heterocycles. Part 2: Six-Membered Ring Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Mathew D, P. LJ, T.M. M, P. D, V.T.K. SR. Therapeutic molecules for multiple human diseases identified from pigeon pea ( Cajanus cajan L. Millsp.) through GC–MS and molecular docking. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
De Coen LM, Heugebaert TSA, García D, Stevens CV. Synthetic Entries to and Biological Activity of Pyrrolopyrimidines. Chem Rev 2015; 116:80-139. [DOI: 10.1021/acs.chemrev.5b00483] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laurens M. De Coen
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Thomas S. A. Heugebaert
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Daniel García
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Christian V. Stevens
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Baraldi PG, Fruttarolo F, Tabrizi MA, Romagnoli R, Preti D. Novel 8-heterocyclyl xanthine derivatives in drug development - an update. Expert Opin Drug Discov 2013; 2:1161-83. [PMID: 23496127 DOI: 10.1517/17460441.2.9.1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naturally occurring methyl xanthines, especially caffeine and theophylline, have been widely investigated for their pharmacological properties as cognition enhancers, bronchodilator agents and mild diuretics. The xanthine core (3,7-dihydro-1H-purine-2,6-dione) has been largely manipulated in the search for selective ligands for different pharmacological targets, proving to be a versatile scaffold for the development of lead compounds in multiple therapeutic areas. The introduction of a heterocycle at the 8-position of some xanthine derivatives demonstrated to be a successful strategy for the identification of potent and selective A1 or A2B adenosine receptors antagonists as potential agents for the treatment of Alzheimer's disease and asthma, respectively. Interesting examples of 8-heterocyclyl-xanthines as dipeptidyl peptidase IV inhibitors and liver X receptor agonists have been claimed for their possible therapeutic use in the treatment of Type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Pier G Baraldi
- Università di Ferrara, Dipartimento di Scienze Farmaceutiche, 44100 Ferrara, Italy +39 0532 455921 ; +39 0532 455953 ;
| | | | | | | | | |
Collapse
|
8
|
Roy B, Hazra S, Mondal B, Majumdar KC. Cu(OTf)2-Catalyzed Dehydrogenative C-H Activation under Atmospheric Oxygen: An Expedient Approach to Pyrrolo[3,2-d]pyrimidine Derivatives. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Bartoccini F, Piersanti G, Mor M, Tarzia G, Minetti P, Cabri W. Divergent synthesis of novel 9-deazaxanthine derivatives via late-stage cross-coupling reactions. Org Biomol Chem 2012; 10:8860-7. [DOI: 10.1039/c2ob26516h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Abstract
The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.
Collapse
Affiliation(s)
- Christa Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany, Phone +49-228-73-2301, Fax +49-228-73-2567
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892, United States of America, Phone +1-301-496-9024, Fax +1-301-480-8422
| |
Collapse
|
11
|
Synthesis and pharmacological evaluation of novel substituted 9-deazaxanthines as A2B receptor antagonists. Eur J Med Chem 2010; 45:2884-92. [DOI: 10.1016/j.ejmech.2010.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 11/18/2022]
|
12
|
Kalla RV, Zablocki J, Tabrizi MA, Baraldi PG. Recent developments in A2B adenosine receptor ligands. Handb Exp Pharmacol 2009:99-122. [PMID: 19639280 DOI: 10.1007/978-3-540-89615-9_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1)) = 37 nM; K(i))(hA(2A)) = 328; and K(i))(hA(3)) = 450 nm) was discovered by the OSI group. The three highly selective, high-affinity A(2B)AR antagonists that have been selected for development should prove useful in subsequent clinical trials that will establish the role of the A(2B)ARs in various disease states.
Collapse
Affiliation(s)
- Rao V Kalla
- Department of Medicinal Chemistry, CV Therapeutics Inc., Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
13
|
Pudziuvelyte E, Ríos-Luci C, León LG, Cikotiene I, Padrón JM. Synthesis and antiproliferative activity of 2,4-disubstituted 6-aryl-7H-pyrrolo[3,2-d]pyrimidin-7-one 5-oxides. Bioorg Med Chem 2009; 17:4955-60. [DOI: 10.1016/j.bmc.2009.05.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/25/2009] [Accepted: 05/31/2009] [Indexed: 11/25/2022]
|
14
|
1,3-Dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure–affinity and structure–selectivity relationships. Bioorg Med Chem 2009; 17:3618-29. [DOI: 10.1016/j.bmc.2009.03.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/24/2022]
|
15
|
Gibson CL, Huggan JK, Kennedy A, Kiefer L, Lee JH, Suckling CJ, Clements C, Harvey AL, Hunter WN, Tulloch LB. Diversity oriented syntheses of fused pyrimidines designed as potential antifolates. Org Biomol Chem 2009; 7:1829-42. [PMID: 19590778 DOI: 10.1039/b818339b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diversity oriented syntheses of some furo[2,3-d]pyrimidines and pyrrolo[2,3-d]pyrimidines related to folate, guanine, and diaminopyrimidine-containing drugs have been developed for the preparation of potential anti-infective and anticancer compounds. Amide couplings and Suzuki couplings on the basic heterocyclic templates were used, in the latter case yields being especially high using aromatic trifluoroborates as the coupling partner. A new ring synthesis of 6-aryl-substituted deazaguanines bearing 2-alkylthio groups has been developed using Michael addition of substituted nitrostyrenes. Diversity at C-2 has been introduced by oxidation and substitution with a range of amino nucleophiles. The chemical reactivity of these pyrrolopyrimidines with respect to both electrophilic substitution in ring synthesis and nucleophilic substitution for diversity is discussed. Several compounds were found to inhibit pteridine reductases from the protozoan parasites Trypanosoma brucei and Leishmania major at the micromolar level and to inhibit the growth of Trypanosma brucei brucei in cell culture at higher concentrations. From these results, significant structural features required for inhibition of this important drug target enzyme have been identified.
Collapse
Affiliation(s)
- Colin L Gibson
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalla RV, Zablocki J. Progress in the discovery of selective, high affinity A(2B) adenosine receptor antagonists as clinical candidates. Purinergic Signal 2009; 5:21-9. [PMID: 18568423 PMCID: PMC2721775 DOI: 10.1007/s11302-008-9119-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/19/2008] [Indexed: 12/21/2022] Open
Abstract
The selective, high affinity A(2B) adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A(2B) AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A(2B) AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM] that has favorable pharmacokinetic (PK) properties (t (1/2) = 4 h and F > 35% rat). Compound 10 demonstrated functional antagonism at the A(2B) AdoR (K(B) = 6 nM) and efficacy in a mouse model of asthma. In two phase 1 clinical trials, CVT-6883 was found to be safe, well tolerated, and suitable for once daily dosing. A second compound 20, 8-(5-pyrazolyl)-xanthine, has been nominated for development from Baraldi's group in conjunction with King Pharmaceuticals that has favorable A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 1,000; and K(i)(hA(3)) > 1,000 nM], and it has been demonstrated to be a functional antagonist. A third compound 32, a 2-aminopyrimidine, from the Almirall group has high A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM], and 32 has been moved into preclinical safety testing. Since three highly selective, high affinity A(2B) AdoR antagonists have been nominated for development with 10 (CVT-6883) being the furthest along in the development process, the role of the A(2B) AdoR in various disease states will soon be established.
Collapse
Affiliation(s)
- Rao V. Kalla
- Department of Bioorganic Chemistry, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, CA 94304 USA
| | - Jeff Zablocki
- Department of Bioorganic Chemistry, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, CA 94304 USA
| |
Collapse
|
17
|
Stefanachi A, Nicolotti O, Leonetti F, Cellamare S, Campagna F, Loza MI, Brea JM, Mazza F, Gavuzzo E, Carotti A. 1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent A2B adenosine receptor antagonists: Design, synthesis, structure–affinity and structure–selectivity relationships. Bioorg Med Chem 2008; 16:9780-9. [DOI: 10.1016/j.bmc.2008.09.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/19/2008] [Accepted: 09/26/2008] [Indexed: 11/29/2022]
|
18
|
Abou El Ella DA, Ghorab MM, Noaman E, Heiba HI, Khalil AI. Molecular modeling study and synthesis of novel pyrrolo[2,3-d]pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg Med Chem 2007; 16:2391-402. [PMID: 18086527 DOI: 10.1016/j.bmc.2007.11.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/25/2007] [Accepted: 11/23/2007] [Indexed: 11/16/2022]
Abstract
Novel pyrrolo[2,3-d]pyrimidine derivatives 4a-e, 10, 14, 15, pyrazolopyrrolopyrimidine 13, pyrrolotriazolopyrimidine 5-9, 17 and pyrrolopyrimidotriazine 18 are reported herein. The design of these compounds was based upon the molecular modeling simulation of the fitting values and conformational energy values of the best-fitted conformers to VEGFRTK inhibitor hypothesis. This hypothesis was generated from its corresponding lead compounds using CATALYST software. The structures of these compounds were confirmed by microanalyses, IR, (1)H NMR, and mass spectral data. Compounds 6 and 15 showed interesting in vitro antitumor activity compared to doxorubicin as positive control. These results are nearly consistent with the molecular modeling studies. Docking studies were made on compound 15 to predict its binding mode. Moreover, compound 10 exhibited a significant radioprotective activity.
Collapse
Affiliation(s)
- Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Elkhalifa Elmaamoon St., 11566, Abbasseya, Cairo 11371, Egypt
| | | | | | | | | |
Collapse
|
19
|
Vidal B, Nueda A, Esteve C, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, López R, Cadavid MI, Loza MI, Cárdenas A, Godessart N, Beleta J, Warrellow G, Ryder H. Discovery and characterization of 4'-(2-furyl)-N-pyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem 2007; 50:2732-6. [PMID: 17469811 DOI: 10.1021/jm061333v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel series of N-heteroaryl 4'-(2-furyl)-4,5'-bipyrimidin-2'-amines has been identified as potent and selective A(2B) adenosine receptor antagonists. In particular, compound 5 showed high affinity for the A(2B) receptor (Ki = 17 nM), good selectivity (IC(50): A(1) > 1000 nM, A(2A) > 2500 nM, A3 > 1000 nM), displayed a favorable pharmacokinetic profile in preclinical species, and showed efficacy in functional in vitro models.
Collapse
Affiliation(s)
- Bernat Vidal
- Almirall Research Center, Almirall, Ctra. Laureà Miró 408, E-08980 St. Feliu de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|