1
|
Alshahrani S. Renin-angiotensin-aldosterone pathway modulators in chronic kidney disease: A comparative review. Front Pharmacol 2023; 14:1101068. [PMID: 36860293 PMCID: PMC9970101 DOI: 10.3389/fphar.2023.1101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic kidney disease presents a health challenge that has a complex underlying pathophysiology, both acquired and inherited. The pharmacotherapeutic treatment options available today lower the progression of the disease and improve the quality of life but cannot completely cure it. This poses a challenge to the healthcare provider to choose, from the available options, the best way to manage the disease as per the presentation of the patient. As of now, the recommended first line of treatment to control the blood pressure in chronic kidney disease is the administration of renin-angiotensin-aldosterone system modulators. These are represented mainly by the direct renin inhibitor, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers. These modulators are varied in their structure and mechanisms of action, hence showing varying treatment outcomes. The choice of administration of these modulators is determined by the presentation and the co-morbidities of the patient, the availability and affordability of the treatment option, and the expertise of the healthcare provider. A direct head-to-head comparison between these significant renin-angiotensin-aldosterone system modulators is lacking, which can benefit healthcare providers and researchers. In this review, a comparison has been drawn between the direct renin inhibitor (aliskiren), angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers. This can be of significance for healthcare providers and researchers to find the particular loci of interest, either in structure or mechanism, and to intervene as per the case presentation to obtain the best possible treatment option.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
2
|
Structural and spectroscopic analysis of the Cis-Trans isomers of the captopril in the gaseous and aqueous phases. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
4
|
Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10040517. [PMID: 33810336 PMCID: PMC8065631 DOI: 10.3390/antiox10040517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
The antihypertensive effect of the soluble fraction of wine lees (WL) from Cabernet variety grapes was recently reported by our group. This blood pressure (BP)-lowering effect was attributed to the presence of flavanols and anthocyanins. In this context, phenolic-enriched wine lees (PWL) could potentially exhibit a stronger bioactivity. Therefore, the aim of this study was to obtain a soluble fraction of WL with increased phenolic content and evaluate its functionality. The PWL were obtained using an enzyme-assisted extraction based on the hydrolysis of WL proteins with Flavourzyme®. They contained 57.20% more total phenolic compounds than WL, with anthocyanins and flavanols being the largest families present. In addition, PWL also showed greater angiotensin-converting enzyme inhibitory and antioxidant activities. Finally, the antihypertensive activity of the PWL was evaluated in spontaneously hypertensive rats. A single dose of 5 mL/kg body weight of PWL showed a greater BP-lowering effect than the one shown by WL. Moreover, this antihypertensive effect was more prolonged than the one produced by the antihypertensive drug Captopril. These results demonstrate that enzymatic protein hydrolysis is a useful method to maximize the extraction of phenolic compounds from WL and to obtain extracts with enhanced functionalities.
Collapse
|
5
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Margalef M, Arola-Arnal A, Suárez M, Bravo FI, Muguerza B. ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients 2021; 13:nu13020679. [PMID: 33672674 PMCID: PMC7924335 DOI: 10.3390/nu13020679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Wine lees (WL) are by-products generated in the winemaking process. The aim of this study was to investigate the angiotensin-converting enzyme inhibitory (ACEi) activity, and the blood pressure (BP) lowering effect of WL from individual grape varieties. The relationship among their activities and phenolic profiles was also studied. Three WL, from Cabernet, Mazuela, and Garnacha grape varieties, were firstly selected based on their ACEi properties. Their phenolic profiles were fully characterized by UHPLC-ESI-Q-TOF-MS. Then, their potential antihypertensive effects were evaluated in spontaneously hypertensive rats (SHR). BP was recorded before and after their oral administrations (2, 4, 6, 8, 24, and 48 h) at a dose of 5 mL/kg bw. Cabernet WL (CWL) exhibited a potent antihypertensive activity, similar to that obtained with the drug Captopril. This BP-lowering effect was related to the high amount of anthocyanins and flavanols present in these lees. In addition, a potential hypotensive effect of CWL was discarded in normotensive Wistar-Kyoto rats. Finally, the ACEi and antihypertensive activities of CWL coming from a different harvest were confirmed. Our results suggest the potential of CWL for controlling arterial BP, opening the door to commercial use within the wine industry.
Collapse
|
6
|
Straw Wine Melanoidins as Potential Multifunctional Agents: Insight into Antioxidant, Antibacterial, and Angiotensin-I-Converting Enzyme Inhibition Effects. Biomedicines 2018; 6:biomedicines6030083. [PMID: 30072595 PMCID: PMC6163464 DOI: 10.3390/biomedicines6030083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023] Open
Abstract
Numerous studies provide robust evidence for a protective effect of red wine against many diseases. This bioactivity has been mainly associated with phenolic fractions of wines. However, the health effects of melanoidins in red sweet wines has been ignored. The goal of the present work was to unravel the antioxidant, antimicrobial, and angiotensin-I-converting enzyme (ACE) inhibitory properties of straw sweet wine melanoidins. Results demonstrated that melanoidins have a potential antioxidant activity, determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power (FRAP) assays. The antimicrobial activity of melanoidins was also tested against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli. Minimum inhibitory concentration (MIC) of isolated melanoidins against three bacterial strains ranged from 5 mg mL−1 to 10 mg mL−1. Finally, the ACE inhibitory effect of isolated melanoidins was evaluated, as it is linked with antihypertensive activity. Results showed that they have ACE-inhibitory activity ranging from 58.2 ± 5.4% to 75.3 ± 6.4% at a concentration level of 2 mg mL−1. Furthermore, the chemical properties of isolated melanoidins were determined. Results demonstrated that the skeleton of straw wine melanoidins is mainly composed of carbohydrates, and bear significant numbers of phenolic compounds that may play critical roles in their functional properties. Overall, this study describing the chemical composition and functional properties of melanoidin fractions isolated from a straw wine highlights that they can be exploited as functional agents for multiple purposes. Finally, melanoidins are an unexplored source of bioactive molecules in straw wines except from polyphenols that contribute to the health effects.
Collapse
|
7
|
The Effect of Geometrical Isomerism of 3,5-Dicaffeoylquinic Acid on Its Binding Affinity to HIV-Integrase Enzyme: A Molecular Docking Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4138263. [PMID: 27829863 PMCID: PMC5088326 DOI: 10.1155/2016/4138263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/18/2016] [Indexed: 02/02/2023]
Abstract
A potent plant-derived HIV-1 inhibitor, 3,5-dicaffeoylquinic acid (diCQA), has been shown to undergo isomerisation upon UV exposure where the naturally occurring 3 trans ,5 trans -diCQA isomer gives rise to the 3 cis ,5 trans -diCQA, 3 trans ,5 cis -diCQA, and 3 cis ,5 cis -diCQA isomers. In this study, inhibition of HIV-1 INT by UV-induced isomers was investigated using molecular docking methods. Here, density functional theory (DFT) models were used for geometry optimization of the 3,5-diCQA isomers. The YASARA and Autodock VINA software packages were then used to determine the binding interactions between the HIV-1 INT catalytic domain and the 3,5-diCQA isomers and the Discovery Studio suite was used to visualise the interactions between the isomers and the protein. The geometrical isomers of 3,5-diCQA were all found to bind to the catalytic core domain of the INT enzyme. Moreover, the cis geometrical isomers were found to interact with the metal cofactor of HIV-1INT, a phenomenon which has been linked to antiviral potency. Furthermore, the 3 trans ,5 cis -diCQA isomer was also found to interact with both LYS156 and LYS159 which are important residues for viral DNA integration. The differences in binding modes of these naturally coexisting isomers may allow wider synergistic activity which may be beneficial in comparison to the activities of each individual isomer.
Collapse
|
8
|
Bhatt K, Flora SJS. Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:140-146. [PMID: 21783994 DOI: 10.1016/j.etap.2009.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 05/31/2023]
Abstract
Gallium arsenide (GaAs), an inter-metallic semiconductor, known to exhibit superior optical and electronic properties compared to silicon, promotes its use in semiconductor industries. Extensive use of GaAs will inevitably lead to an increase in the exposure of workers manufacturing these products. Antioxidants are exogenous or endogenous compounds acting in several ways, including scavenging reactive oxygen species (ROS) or their precursors, inhibiting ROS formation, and binding metal ions needed for the catalysis of ROS generation. In the present study we investigated the protective efficacy of α-lipoic acid, quercetin and captopril individually against gallium arsenide exposure. Co-administration of α-lipoic acid with GaAs was most effective in reducing GaAs induced inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver, kidney and brain reduced glutathione (GSH) level and elevation of oxidized glutathione (GSSG). Captopril, on the other hand was effective in reducing thiobarbituric acid reactive substance (TBARS) levels, while quercetin reduced ROS in liver and kidney. The results suggest comparatively better preventive efficacy of concomitant α-lipoic acid administration during Gallium arsenide exposure compared to quercetin and captopril in preventing GaAs induced oxidative stress.
Collapse
Affiliation(s)
- Kapil Bhatt
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior-474 002, MP, India
| | | |
Collapse
|
9
|
Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0010-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractComputational chemical methods have been used to correlate the molecular properties of the 10 ACE inhibitors (captopril, enalapril, perindopril, lisinopril, ramipril, trandolapril, quinapril, fosinopril, benazepril, and cilazapril) and some of their active metabolites (enalaprilat, perindoprilat, ramiprilat, trandolaprilat, quinaprilat, fosinoprilat, benazeprilat, and cilazaprilat). The computed pK a values correlate well with the available experimental values. In the dicarboxylic ACE inhibitors, the carboxyalkyl carboxylate group of the ACE inhibitors studied is more acidic than the C-terminal carboxylate. However, at physiological pH = 7.4 both carboxyl groups of ACE inhibitors are completely ionized and the dicarboxyl-containing ACE inhibitors behave as strong acids. The available experimental partition coefficients of these ACE inhibitors investigated are well reproduced by the neural network-based ALOGPs and the fragment-based KoWWiN methods. All parent drugs (and prodrugs), with the exception of fosinopril, are compounds with low lipophilicity. Calculated pK a, lipophilicity, solubility, absorption, and polar surface area of the most effective ACE inhibitors for the prevention of myocardial infarction, perindopril and ramipril, were found similar. Therefore, it is probable that the experimentally observed differences in the survival benefits in the first year after acute myocardial infarction in patients 65 years of age or older correlate closely to the physicochemical and pharmacokinetic characteristics of the specific ACE inhibitor that is used.
Collapse
|