1
|
Nagode A, Vanbeselaere J, Dutkiewicz Z, Kaltenbrunner S, Wilson IBH, Duchêne M. Molecular characterisation of Entamoeba histolytica UDP-glucose 4-epimerase, an enzyme able to provide building blocks for cyst wall formation. PLoS Negl Trop Dis 2023; 17:e0011574. [PMID: 37616327 PMCID: PMC10482301 DOI: 10.1371/journal.pntd.0011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/06/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
In the human host, the protozoan parasite Entamoeba histolytica is adapted to a non-invasive lifestyle in the colon as well as to an invasive lifestyle in the mesenterial blood vessels and the liver. This means to cope with bacteria and human cells as well as various metabolic challenges. Galactose and N-acetylgalactosamine (GalNAc) are sugars of great importance for the amoebae, they attach to the host mucus and enterocytes via their well-studied Gal/GalNAc specific lectin, they carry galactose residues in their surface glycans, and they cleave GalNAc from host mucins. The enzyme UDP-glucose 4-epimerase (GalE) works as a bridge between the galactose and glucose worlds, it can help to generate glucose for glycolysis from phagocytosis products containing galactose as well as providing UDP-galactose necessary for the biosynthesis of galactose-containing surface components. E. histolytica contains a single galE gene. We recombinantly expressed the enzyme in Escherichia coli and used a spectrophotometric assay to determine its temperature and pH dependency (37°C, pH 8.5), its kinetics for UDP-glucose (Km = 31.82 μM, Vmax = 4.31 U/mg) and substrate spectrum. As observed via RP-HPLC, the enzyme acts on UDP-Glc/Gal as well as UDP-GlcNAc/GalNAc. Previously, Trypanosoma brucei GalE and the bloodstream form of the parasite were shown to be susceptible to the three compounds ebselen, a selenoorganic drug with antioxidant properties, diethylstilbestrol, a mimic of oestrogen with anti-inflammatory properties, and ethacrynic acid, a loop diuretic used to treat oedema. In this study, the three compounds had cytotoxic activity against E. histolytica, but only ebselen inhibited the recombinant GalE with an IC50 of 1.79 μM (UDP-Gal) and 1.2 μM (UDP-GalNAc), suggesting that the two other compounds are active against other targets in the parasite. The importance of the ability of GalE to interconvert UDP-GalNAc and UDP-GlcNAc may be that the trophozoites can generate precursors for their own cyst wall from the sugar subunits cleaved from host mucins. This finding advances our understanding of the biochemical interactions of E. histolytica in its colonic environment.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Samantha Kaltenbrunner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, Universität für Bodenkultur, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
4
|
Abdelfattah MAO, Ibrahim MA, Abdullahi HL, Aminu R, Saad SB, Krstin S, Wink M, Sobeh M. Eugenia uniflora and Syzygium samarangense extracts exhibit anti-trypanosomal activity: Evidence from in-silico molecular modelling, in vitro, and in vivo studies. Biomed Pharmacother 2021; 138:111508. [PMID: 33756157 DOI: 10.1016/j.biopha.2021.111508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.
Collapse
Affiliation(s)
| | | | | | - Raphael Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
5
|
Cramer JT, Führing JI, Baruch P, Brütting C, Knölker HJ, Gerardy-Schahn R, Fedorov R. Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes T. Cramer
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christian Brütting
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Wachsmuth LM, Johnson MG, Gavenonis J. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. PLoS Negl Trop Dis 2017; 11:e0005720. [PMID: 28662026 PMCID: PMC5507555 DOI: 10.1371/journal.pntd.0005720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/12/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.
Collapse
Affiliation(s)
- Leah M. Wachsmuth
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Meredith G. Johnson
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Jason Gavenonis
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zanni R, Galvez-Llompart M, Machuca J, Garcia-Domenech R, Recacha E, Pascual A, Rodriguez-Martinez JM, Galvez J. Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem 2017; 137:233-246. [PMID: 28595068 DOI: 10.1016/j.ejmech.2017.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
Abstract
The control of antimicrobial resistance (AMR) seems to have come to an impasse. The use and abuse of antibacterial drugs has had major consequences on the genetic mutability of both pathogenic and nonpathogenic microorganisms, leading to the development of new highly resistant strains. Because of the complexity of this situation, an in silico strategy based on QSAR molecular topology was devised to identify synthetic molecules as antimicrobial agents not susceptible to one or several mechanisms of resistance such as: biofilms formation (BF), ionophore (IA) activity, epimerase (EI) activity or SOS system (RecA inhibition). After selecting a group of 19 compounds, five of them showed significant antimicrobial activity against several strains of Staphylococcus (2 S. aureus, including 1 methicillin resistant, and 1 S. epidermidis), with MIC values between 16 and 32 mg/L. Among the compounds active on RecA, one showed a marked activity in decreasing RecA gene expression in Escherichia coli.
Collapse
Affiliation(s)
- Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain.
| | - Maria Galvez-Llompart
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Jesus Machuca
- Department of Microbiology, University of Seville, Seville, Spain
| | - Ramon Garcia-Domenech
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Esther Recacha
- Department of Microbiology, University of Seville, Seville, Spain
| | - Alvaro Pascual
- Department of Microbiology, University of Seville, Seville, Spain
| | | | - Jorge Galvez
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
9
|
Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Appl Environ Microbiol 2015; 82:528-37. [PMID: 26546427 DOI: 10.1128/aem.02838-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/01/2015] [Indexed: 01/31/2023] Open
Abstract
The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.
Collapse
|
10
|
Niemann H, Marmann A, Lin W, Proksch P. Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sponge derived bromotyrosines are a multifaceted class of marine bioactive compounds that are important for the chemical defense of sponges but also for drug discovery programs as well as for technical applications in the field of antifouling constituents. These compounds, which are mainly accumulated by Verongid sponges, exhibit a diverse range of bioactivities including antibiotic, cytotoxic and antifouling effects. In spite of the simple biogenetic building blocks, which consist only of brominated tyrosine and tyramine units, an impressive diversity of different compounds is obtained through different linkages between these precursors and through structural modifications of the side chains and/or aromatic rings resembling strategies that are known from combinatorial chemistry. As examples for bioactive, structurally divergent bromotyrosines psammaplin A, Aplysina alkaloids featuring aerothionin, aeroplysinin-1 and the dienone, and the bastadins, including the synthetically derived hemibastadin congeners, have been selected for this review. Whereas all of these natural products are believed to be involved in the chemical defense of sponges, some of them may also be of particular relevance to drug discovery due to their interaction with specific molecular targets in eukaryotic cells. These targets involve important enzymes and receptors, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), which are inhibited by psammaplin A, as well as ryanodine receptors that are targeted by bastadine type compounds. The hemibastadins such as the synthetically derived dibromohemibastadin are of particular interest due to their antifouling activity. For the latter, a phenoloxidase which catalyzes the bioglue formation needed for firm attachment of fouling organisms to a given substrate was identified as a molecular target. The Aplysina alkaloids finally provide a vivid example for dynamic wound induced bioconversions of natural products that generate highly efficient chemical weapons precisely when and where needed.
Collapse
Affiliation(s)
- Hendrik Niemann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andreas Marmann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Health Science Center, Beijing100191, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Waugh B, Ghosh A, Bhattacharyya D, Ghoshal N, Banerjee R. In silico work flow for scaffold hopping in Leishmania. BMC Res Notes 2014; 7:802. [PMID: 25399834 PMCID: PMC4247209 DOI: 10.1186/1756-0500-7-802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leishmaniasis,a broad spectrum of diseases caused by several sister species of protozoa belonging to family trypanosomatidae and genus leishmania , generally affects poorer sections of the populace in third world countries. With the emergence of strains resistant to traditional therapies and the high cost of second line drugs which generally have severe side effects, it becomes imperative to continue the search for alternative drugs to combat the disease. In this work, the leishmanial genomes and the human genome have been compared to identify proteins unique to the parasite and whose structures (or those of close homologues) are available in the Protein Data Bank. Subsequent to the prioritization of these proteins (based on their essentiality, virulence factor etc.), inhibitors have been identified for a subset of these prospective drug targets by means of an exhaustive literature survey. A set of three dimensional protein-ligand complexes have been assembled from the list of leishmanial drug targets by culling structures from the Protein Data Bank or by means of template based homology modeling followed by ligand docking with the GOLD software. Based on these complexes several structure based pharmacophores have been designed and used to search for alternative inhibitors in the ZINC database. RESULT This process led to a list of prospective compounds which could serve as potential antileishmanials. These small molecules were also used to search the Drug Bank to identify prospective lead compounds already in use as approved drugs. Interestingly, paromomycin which is currently being used as an antileishmanial drug spontaneously appeared in the list, probably giving added confidence to the 'scaffold hopping' computational procedures adopted in this work. CONCLUSIONS The report thus provides the basis to experimentally verify several lead compounds for their predicted antileishmanial activity and includes several useful data bases of prospective drug targets in leishmania, their inhibitors and protein--inhibitor three dimensional complexes.
Collapse
Affiliation(s)
- Barnali Waugh
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| | - Ambarnil Ghosh
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| | - Dhananjay Bhattacharyya
- />Computer Science Division, Saha Institute of Nuclear Physics, Sector-1, Block AF, Biddhannagar, Kolkata, 700064 India
| | - Nanda Ghoshal
- />Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Rahul Banerjee
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| |
Collapse
|
12
|
UDP-galactose 4'-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors. Parasitology 2014; 142:463-72. [PMID: 25124392 DOI: 10.1017/s003118201400136x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Collapse
|
13
|
Führing J, Cramer JT, Routier FH, Lamerz AC, Baruch P, Gerardy-Schahn R, Fedorov R. Catalytic Mechanism and Allosteric Regulation of UDP-Glucose Pyrophosphorylase from Leishmania major. ACS Catal 2013. [DOI: 10.1021/cs4007777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Führing
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Johannes T. Cramer
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Françoise H. Routier
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Anne-Christin Lamerz
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Petra Baruch
- Research
Division for Structural Analysis, OE8830, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Roman Fedorov
- Research
Division for Structural Analysis, OE8830, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Institute
for Biophysical Chemistry, OE4350, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Urbaniak MD, Collie IT, Fang W, Aristotelous T, Eskilsson S, Raimi OG, Harrison J, Navratilova IH, Frearson JA, van Aalten DMF, Ferguson MAJ. A novel allosteric inhibitor of the uridine diphosphate N-acetylglucosamine pyrophosphorylase from Trypanosoma brucei. ACS Chem Biol 2013; 8:1981-7. [PMID: 23834437 PMCID: PMC3780468 DOI: 10.1021/cb400411x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Uridine
diphosphate N-acetylglucosamine pyrophosphorylase
(UAP) catalyzes the final reaction in the biosynthesis of UDP-GlcNAc,
an essential metabolite in many organisms including Trypanosoma
brucei, the etiological agent of Human African Trypanosomiasis.
High-throughput screening of recombinant T. brucei UAP identified a UTP-competitive inhibitor with selectivity over
the human counterpart despite the high level of conservation of active
site residues. Biophysical characterization of the UAP enzyme kinetics
revealed that the human and trypanosome enzymes both display a strictly
ordered bi–bi mechanism, but with the order of substrate binding reversed.
Structural characterization of the T. brucei UAP–inhibitor
complex revealed that the inhibitor binds at an allosteric site absent
in the human homologue that prevents the conformational rearrangement
required to bind UTP. The identification of a selective inhibitory
allosteric binding site in the parasite enzyme has therapeutic potential.
Collapse
Affiliation(s)
- Michael D. Urbaniak
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Iain T. Collie
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Wenxia Fang
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Tonia Aristotelous
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Susanne Eskilsson
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Olawale G. Raimi
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Justin Harrison
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Iva Hopkins Navratilova
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Julie A. Frearson
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Daan M. F. van Aalten
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael A. J. Ferguson
- Division
of Biological Chemistry and Drug Discovery, ‡Division of Molecular Microbiology, and §MRC Protein Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
15
|
Carlson-Banning KM, Chou A, Liu Z, Hamill RJ, Song Y, Zechiedrich L. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS One 2013; 8:e69646. [PMID: 23936064 PMCID: PMC3720592 DOI: 10.1371/journal.pone.0069646] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 12/27/2022] Open
Abstract
Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5–15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.
Collapse
Affiliation(s)
- Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew Chou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhen Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard J. Hamill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
McCorvie TJ, Timson DJ. In silico prediction of the effects of mutations in the human UDP-galactose 4'-epimerase gene: towards a predictive framework for type III galactosemia. Gene 2013; 524:95-104. [PMID: 23644136 DOI: 10.1016/j.gene.2013.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/30/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The enzyme UDP-galactose 4'-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.
Collapse
Affiliation(s)
- Thomas J McCorvie
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
17
|
Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, Afzal S, Kelner A, Hui R, Ferguson MAJ. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol Microbiol 2012; 85:513-34. [PMID: 22676716 PMCID: PMC3465800 DOI: 10.1111/j.1365-2958.2012.08124.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.
Collapse
Affiliation(s)
- Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
With the rapid advances in sequencing technologies in recent years, the human genome is now considered incomplete without the complementing microbiome, which outnumbers human genes by a factor of one hundred. The human microbiome, and more specifically the gut microbiome, has received considerable attention and research efforts over the past decade. Many studies have identified and quantified "who is there?," while others have determined some of their functional capacity, or "what are they doing?" In a recent study, we identified novel salt-tolerance loci from the human gut microbiome using combined functional metagenomic and bioinformatics based approaches. Herein, we discuss the identified loci, their role in salt-tolerance and their importance in the context of the gut environment. We also consider the utility and power of functional metagenomics for mining such environments for novel genes and proteins, as well as the implications and possible applications for future research.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Cardiff School of Biosciences; Cardiff University; Cardiff, UK,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| | - Roy D. Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland,Correspondence to: Julian R. Marchesi, and Colin Hill, and Roy D. Sleator,
| |
Collapse
|
19
|
Oppenheimer M, Valenciano AL, Sobrado P. Biosynthesis of galactofuranose in kinetoplastids: novel therapeutic targets for treating leishmaniasis and chagas' disease. Enzyme Res 2011; 2011:415976. [PMID: 21687654 PMCID: PMC3112513 DOI: 10.4061/2011/415976] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/02/2011] [Accepted: 03/14/2011] [Indexed: 12/14/2022] Open
Abstract
Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during infection. β-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of Leishmania spp. and Trypanosoma cruzi. β-Galf-containing glycans have been shown to be important in parasite-cell interaction and protection against oxidative stress. Here, we discuss the role of β-Galf in pathogenesis and recent studies on the Galf-biosynthetic enzymes: UDP-galactose 4′ epimerase (GalE), UDP-galactopyranose mutase (UGM), and UDP-galactofuranosyl transferase (GalfT). The central role in Galf formation, its unique chemical mechanism, and the absence of a homologous enzyme in humans identify UGM as the most attractive drug target in the β-Galf-biosynthetic pathway in protozoan parasites.
Collapse
|
20
|
Descroix K, Wagner GK. The first C-glycosidic analogue of a novel galactosyltransferase inhibitor. Org Biomol Chem 2011; 9:1855-63. [PMID: 21267505 DOI: 10.1039/c0ob00630k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural analogues and mimics of the natural sugar-nucleotide UDP-galactose (UDP-Gal) are sought after as chemical tools for glycobiology and drug discovery. We have recently developed a novel class of galactosyltransferase (GalT) inhibitors derived from UDP-Gal, bearing an additional substituent at the 5-position of the uracil base. Herein we report the first C-glycosidic derivative of this new class of GalT inhibitors. We describe a practical convergent synthesis of the new UDP-C-Gal derivative, including a systematic study into the use of radical chemistry for the preparation of galactosyl ethylphosphonate, a key synthetic intermediate. The new inhibitor showed activity against a bacterial UDP-Gal 4'-epimerase at micromolar concentrations. This is the first example of a base-modified UDP-sugar as an inhibitor of a UDP-sugar-dependent enzyme which is not a glycosyltransferase, and these results may therefore have implications for the design of inhibitors of these enzymes in the future.
Collapse
Affiliation(s)
- Karine Descroix
- School of Pharmacy, University of East Anglia, Norwich, UK NR4 7TJ
| | | |
Collapse
|
21
|
Durrant JD, Urbaniak MD, Ferguson MAJ, McCammon JA. Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4'-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness. J Med Chem 2010; 53:5025-32. [PMID: 20527952 PMCID: PMC2895357 DOI: 10.1021/jm100456a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4′-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose metabolism, is one promising T. brucei drug target. We here use the relaxed complex scheme, an advanced computer-docking methodology that accounts for full protein flexibility, to identify inhibitors of TbGalE. An initial hit rate of 62% was obtained at 100 μM, ultimately leading to the identification of 14 low-micromolar inhibitors. Thirteen of these inhibitors belong to a distinct series with a conserved binding motif that may prove useful in future drug design and optimization.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
22
|
Sharlow ER, Lyda TA, Dodson HC, Mustata G, Morris MT, Leimgruber SS, Lee KH, Kashiwada Y, Close D, Lazo JS, Morris JC. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity. PLoS Negl Trop Dis 2010; 4:e659. [PMID: 20405000 PMCID: PMC2854128 DOI: 10.1371/journal.pntd.0000659] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome. African sleeping sickness is a disease found in sub-Saharan Africa that is caused by the single-celled parasite Trypanosoma brucei. The drugs used widely now to treat infections are 50 years old and notable for their toxicity, emphasizing the need for development of new therapeutics. In the search for potential drug targets, researchers typically focus on enzymes or proteins that are essential to the survival of the infectious agent while being distinct enough from the host to avoid accidental targeting of the host enzyme. This work describes our research on one such trypanosome enzyme, hexokinase, which is a protein that the parasite requires to make energy. Here we describe the results of our search for inhibitors of the parasite enzyme. By screening 220,223 compounds for anti-hexokinase activity, we have identified new inhibitors of the parasite enzyme. Some of these are toxic to trypanosomes while having no effect on mammalian cells, suggesting that they may hold promise for the development of new anti-parasitic compounds.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- University of Pittsburgh Drug Discovery Institute and Pittsburgh Molecular Libraries Screening Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lamerz AC, Damerow S, Kleczka B, Wiese M, van Zandbergen G, Lamerz J, Wenzel A, Hsu FF, Turk J, Beverley SM, Routier FH. Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology 2010; 20:872-82. [PMID: 20335578 DOI: 10.1093/glycob/cwq045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nucleotide sugar UDP-galactose (UDP-Gal) is essential for the biosynthesis of several abundant glycoconjugates forming the surface glycocalyx of the protozoan parasite Leishmania major. Current data suggest that UDP-Gal could arise de novo by epimerization of UDP-glucose (UDP-Glc) or by a salvage pathway involving phosphorylation of Gal and the action of UDP-glucose:alpha-D-galactose-1-phosphate uridylyltransferase as described by Leloir. Since both pathways require UDP-Glc, inactivation of the UDP-glucose pyrophosphorylase (UGP) catalyzing activation of glucose-1 phosphate to UDP-Glc was expected to deprive parasites of UDP-Gal required for Leishmania glycocalyx formation. Targeted deletion of the gene encoding UGP, however, only partially affected the synthesis of the Gal-rich phosphoglycans. Moreover, no alteration in the abundant Gal-containing glycoinositolphospholipids was found in the deletion mutant. Consistent with these findings, the virulence of the UGP-deficient mutant was only modestly affected. These data suggest that Leishmania elaborates a UDP-Glc independent salvage pathway for UDP-Gal biosynthesis.
Collapse
|
24
|
Bui C, Ouzzine M, Talhaoui I, Sharp S, Prydz K, Coughtrie MWH, Fournel-Gigleux S. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J 2009; 24:436-50. [PMID: 19812376 DOI: 10.1096/fj.09-136291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs), strategically located at the cell-tissue-organ interface, regulate major biological processes, including cell proliferation, migration, and adhesion. These vital functions are compromised in tumors, due, in part, to alterations in heparan sulfate (HS) expression and structure. How these modifications occur is largely unknown. Here, we investigated whether epigenetic abnormalities involving aberrant DNA methylation affect HS biosynthetic enzymes in cancer cells. Analysis of the methylation status of glycosyltransferase and sulfotransferase genes in H-HEMC-SS chondrosarcoma cells showed a typical hypermethylation profile of 3-OST sulfotransferase genes. Exposure of chondrosarcoma cells to 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA-methyltransferase inhibitor, up-regulated expression of 3-OST1, 3-OST2, and 3-OST3A mRNAs, indicating that aberrant methylation affects transcription of these genes. Furthermore, HS expression was restored on 5-Aza-dc treatment or reintroduction of 3-OST expression, as shown by indirect immunofluorescence microscopy and/or analysis of HS chains by anion-exchange and gel-filtration chromatography. Notably, 5-Aza-dc treatment of HEMC cells or expression of 3-OST3A cDNA reduced their proliferative and invading properties and augmented adhesion of chondrosarcoma cells. These results provide the first evidence for specific epigenetic regulation of 3-OST genes resulting in altered HSPG sulfation and point to a defect of HS-3-O-sulfation as a factor in cancer progression.
Collapse
Affiliation(s)
- Catherine Bui
- UMR CNRS 7561-University Henri Poincaré Nancy 1, Faculty of Medicine, BP 184, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Johnson TA, Amagata T, Sashidhara KV, Oliver AG, Tenney K, Matainaho T, Ang KKH, McKerrow JH, Crews P. The aignopsanes, a new class of sesquiterpenes from selected chemotypes of the sponge Cacospongia mycofijiensis. Org Lett 2009; 11:1975-8. [PMID: 19385671 PMCID: PMC3762577 DOI: 10.1021/ol900446d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A survey of individual specimens of northern Papua New Guinea derived Cacospongia mycofijiensis has yielded novel sesquiterpenes, aignopsanoic acid A (1), methyl aignopsanoate A (2), and isoaignopsanoic acid A (3). The structures and absolute configurations of 1-3 were established using NMR data, X-ray crystallography results, and an analysis of CD properties. Two of these metabolites, 1 and 2, were moderately active against Trypanosoma brucei, the parasite responsible for sleeping sickness.
Collapse
Affiliation(s)
- Tyler A. Johnson
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Taro Amagata
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Koneni V. Sashidhara
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Karen Tenney
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Teatulohi Matainaho
- University of Papua New Guinea, National Captical District, Papua New Guinea
| | - Kenny Kean-Hooi Ang
- Small Molecule Discovery Center, University of California, San Francisco, CA 94158
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Disease, University of California, San Francisco, CA, 94143
| | - Phillip Crews
- Department of Chemistry and Biochemistry & Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| |
Collapse
|
26
|
Rubio BK, Tenney K, Ang KH, Abdulla M, Arkin M, McKerrow JH, Crews P. The marine sponge Diacarnus bismarckensis as a source of peroxiterpene inhibitors of Trypanosoma brucei, the causative agent of sleeping sickness. JOURNAL OF NATURAL PRODUCTS 2009; 72:218-222. [PMID: 19159277 PMCID: PMC2880650 DOI: 10.1021/np800711a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human African trypanosomiasis, also known as African sleeping sickness, is a neglected tropical disease with inadequate therapeutic options. We have launched a collaborative new lead discovery venture using our repository of extracts and natural product compounds as input into our growth inhibition primary screen against Trypanosoma brucei. Careful evaluation of the spectral data of the natural products and derivatives allowed for the elucidation of the absolute configuration (using the modified Mosher's method) of two new peroxiterpenes: (+)-muqubilone B (1a) and (-)-ent-muqubilone (3a). Five known compounds were also isolated: (+)-sigmosceptrellin A (4a), (+)-sigmosceptrellin A methyl ester (4b), (-)-sigmosceptrellin B (5), (+)-epi-muqubillin A (6), and (-)-epi-nuapapuin B methyl ester (7). The isolated peroxiterpenes demonstrated activities in the range IC(50) = 0.2-2 mug/mL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Phillip Crews
- To whom correspondence should be addressed. . Tel: (831) 459-2603. Fax: (831) 459-2935
| |
Collapse
|
27
|
Chapter 12 Inhibitors of GPI Biosynthesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Pesnot T, Wagner GK. Novel derivatives of UDP-glucose: concise synthesis and fluorescent properties. Org Biomol Chem 2008; 6:2884-91. [PMID: 18688480 DOI: 10.1039/b805216f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel 5-substituted UDP-glucose derivatives with interesting fluorescent properties and potential applications as sensors for carbohydrate-active enzymes is reported. An efficient synthesis of the target molecules was developed, centred around the Suzuki-Miyaura reaction of (hetero)arylboronic acids with 5-iodo UDP-glucose. Interestingly, the optimised cross-coupling conditions could also be applied successfully to 5-bromo UMP, but not to 5-bromo UDP-glucose.
Collapse
Affiliation(s)
- Thomas Pesnot
- Centre for Carbohydrate Chemistry, School of Chemical Sciences & Pharmacy, University of East Anglia, Norwich, NR4 7TJ, England
| | | |
Collapse
|
29
|
Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 2008; 42:481-515. [PMID: 18066955 DOI: 10.1080/10409230701751611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.
Collapse
|
30
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
31
|
Chung MC, Ferreira EI, Santos JL, Giarolla J, Rando DG, Almeida AE, Bosquesi PL, Menegon RF, Blau L. Prodrugs for the treatment of neglected diseases. Molecules 2007; 13:616-77. [PMID: 18463559 PMCID: PMC6245083 DOI: 10.3390/molecules13030616] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 11/16/2022] Open
Abstract
Recently, World Health Organization (WHO) and Medicins San Frontieres (MSF) proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS) diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people,mainly in developing countries, die each year from infectious diseases. From 1975 to 1999,1393 new drugs were approved yet only 1% were for the treatment of neglected diseases[3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas' disease (American trypanosomiasis), sleeping sickness (African trypanosomiasis), malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.
Collapse
Affiliation(s)
- Man Chin Chung
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Elizabeth Igne Ferreira
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Jean Leandro Santos
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Jeanine Giarolla
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Daniela Gonçales Rando
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Adélia Emília Almeida
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Priscila Longhin Bosquesi
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Renato Farina Menegon
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Lorena Blau
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| |
Collapse
|