1
|
Blériot Y, Auberger N, Désiré J. Sugar-Derived Amidines and Congeners: Structures, Glycosidase Inhibition and Applications. Curr Med Chem 2021; 29:1271-1292. [PMID: 34951354 DOI: 10.2174/0929867329666211222164545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Glycosidases, the enzymes responsible for the breakdown of glycoconjugates including di-, oligo- and polysaccharides are ubiquitous through all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes.
Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review we report and discuss the structure, the inhibition profile and the use of these molecules including related structural congeners as transition state analogs.
Collapse
Affiliation(s)
- Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9. France
| |
Collapse
|
2
|
Ding R, Zhang T, Wilson DJ, Xie J, Williams J, Xu Y, Ye Y, Chen L. Discovery of Irreversible p97 Inhibitors. J Med Chem 2019; 62:2814-2829. [PMID: 30830772 DOI: 10.1021/acs.jmedchem.9b00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibitors of human p97 (also known as valosin-containing protein) have been actively pursued because of their potential therapeutic applications in cancer and other diseases. However, covalent and irreversible p97 inhibitors have not been well explored. Herein, we report our design, synthesis, and biological evaluation of covalent and irreversible inhibitors of p97. Among an amide and a reverse amide series we synthesized, we have identified a p97 inhibitor whose functional irreversibility has been established both in vitro and in cells. Also importantly, mass spectrometry reveals three potential cysteine residues labeled by this compound, and mutagenesis together with computer modeling suggests Cys522 as a major site, which when modified, could compromise the function of p97. Taken together, this new inhibitor may provide a template for designing more potent p97 inhibitors with covalent and irreversible characteristics.
Collapse
Affiliation(s)
- Rui Ding
- Center for Drug Design, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Daniel J Wilson
- Center for Drug Design, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
3
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
4
|
QM/MM analysis of effect of divalent metal ions on OPRT action. Comput Biol Chem 2018; 74:80-85. [DOI: 10.1016/j.compbiolchem.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/19/2022]
|
5
|
Harris LD, Harijan RK, Ducati RG, Evans GB, Hirsch BM, Schramm VL. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase. ACS Chem Biol 2018; 13:152-160. [PMID: 29178779 DOI: 10.1021/acschembio.7b00601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.
Collapse
Affiliation(s)
- Lawrence D. Harris
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
| | - Rajesh K. Harijan
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G. Ducati
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brett M. Hirsch
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Zhang Y, Evans GB, Clinch K, Crump DR, Harris LD, Fröhlich RFG, Tyler PC, Hazleton KZ, Cassera MB, Schramm VL. Transition state analogues of Plasmodium falciparum and human orotate phosphoribosyltransferases. J Biol Chem 2013; 288:34746-54. [PMID: 24158442 DOI: 10.1074/jbc.m113.521955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The survival and proliferation of Plasmodium falciparum parasites and human cancer cells require de novo pyrimidine synthesis to supply RNA and DNA precursors. Orotate phosphoribosyltransferase (OPRT) is an indispensible component in this metabolic pathway and is a target for antimalarials and antitumor drugs. P. falciparum (Pf) and Homo sapiens (Hs) OPRTs are characterized by highly dissociative transition states with ribocation character. On the basis of the geometrical and electrostatic features of the PfOPRT and HsOPRT transition states, analogues were designed, synthesized, and tested as inhibitors. Iminoribitol mimics of the ribocation transition state in linkage to pyrimidine mimics using methylene or ethylene linkers gave dissociation constants (Kd) as low as 80 nM. Inhibitors with pyrrolidine groups as ribocation mimics displayed slightly weaker binding affinities for OPRTs. Interestingly, p-nitrophenyl riboside 5'-phosphate bound to OPRTs with Kd values near 40 nM. Analogues designed with a C5-pyrimidine carbon-carbon bond to ribocation mimics gave Kd values in the range of 80-500 nM. Acyclic inhibitors with achiral serinol groups as the ribocation mimics also displayed nanomolar inhibition against OPRTs. In comparison with the nucleoside derivatives, inhibition constants of their corresponding 5'-phosphorylated transition state analogues are largely unchanged, an unusual property for a nucleotide-binding site. In silico docking of the best inhibitor into the HsOPRT active site supported an extensive hydrogen bond network associated with the tight binding affinity. These OPRT transition state analogues identify crucial components of potent inhibitors targeting OPRT enzymes. Despite their tight binding to the targets, the inhibitors did not kill cultured P. falciparum.
Collapse
Affiliation(s)
- Yong Zhang
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Breda A, Machado P, Rosado LA, Souto AA, Santos DS, Basso LA. Pyrimidin-2(1H)-ones based inhibitors of Mycobacterium tuberculosis orotate phosphoribosyltransferase. Eur J Med Chem 2012; 54:113-22. [PMID: 22608674 DOI: 10.1016/j.ejmech.2012.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is an ancient human chronic infectious disease caused mainly by Mycobacterium tuberculosis. The emergence of strains resistant to first and second line anti-TB drugs, associated with the increasing number of TB cases among HIV positive subjects, and the large number of individuals infected with latent bacilli have urged the development of new strategies to treat TB. Enzymes of nucleotide metabolism pathways provide promising molecular targets for the development of drugs, aiming at both active and latent TB. The orotate phosphoribosyltransferase (OPRT) enzyme catalyzes the synthesis of orotidine 5'-monophosphate from 5'-phospho-α-d-ribose 1'-diphosphate and orotic acid, in the de novo pyrimidine synthesis pathway. Based on the kinetic mechanism and molecular properties, here we describe the design, selection and synthesis of substrate analogs with inhibitory activity of M. tuberculosis OPRT (MtOPRT) enzyme. Steady-state kinetic measurements were employed to determine the mode of inhibition of commercially available and chemically derived compounds. The 6-Hydroxy-2-oxo-1,2-dihydropyridine-4-carboxylic acid (6) chemical compound and its derivative, 3-Benzylidene-2,6-dioxo-1,2,3,6-tetrahydropyridine-4-carboxylic acid (13), showed enzyme inhibition constants in the submicromolar range. Isothermal titration calorimetry data indicated that binding of both compounds to MtOPRT have negative enthalpy and favorable Gibbs free energy probably due to their high complementarity to the enzyme's binding pocket. Improvement of compound 13 hydrophobic character by addition of an aromatic ring substituent resulted in entropic optimization, reflected on a thermodynamic discrimination profile characteristic of high affinity ligands. These inhibitors represent lead compounds for further development of MtOPRT inhibitors with increased potency, which may be tested as anti-TB agents.
Collapse
Affiliation(s)
- Ardala Breda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6900, Prédio 92A - TECNOPUC, 90619-900 Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
|