1
|
Kuehm OP, Hayden JA, Bearne SL. A Phenylboronic Acid-Based Transition State Analogue Yields Nanomolar Inhibition of Mandelate Racemase. Biochemistry 2023. [PMID: 37285384 DOI: 10.1021/acs.biochem.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mandelate racemase (MR) catalyzes the Mg2+-dependent interconversion of (R)- and (S)-mandelate by stabilizing the altered substrate in the transition state (TS) by ∼26 kcal/mol. The enzyme has been employed as a model to explore the limits to which the free energy of TS stabilization may be captured by TS analogues to effect strong binding. Herein, we determined the thermodynamic parameters accompanying binding of a series of bromo-, chloro-, and fluoro-substituted phenylboronic acids (PBAs) by MR and found that binding was predominately driven by favorable entropy changes. 3,4-Dichloro-PBA was discovered to be the most potent inhibitor yet identified for MR, binding with a Kdapp value of 11 ± 2 nM and exceeding the binding of the substrate by ∼72,000-fold. The ΔCp value accompanying binding (-488 ± 18 cal·mol-1 K-1) suggested that dispersion forces contribute significantly to the binding. The pH-dependence of the inhibition revealed that MR preferentially binds the anionic, tetrahedral form of 3,4-dichloro-PBA with a pH-independent Ki value of 5.7 ± 0.5 nM, which was consistent with the observed upfield shift of the 11B NMR signal. The linear free energy relationship between log(kcat/Km) and log(1/Ki) for wild-type and 11 MR variants binding 3,4-dichloro-PBA had a slope of 0.8 ± 0.2, indicating that MR recognizes the inhibitor as an analogue of the TS. Hence, halogen substitution may be utilized to capture additional free energy of TS stabilization arising from dispersion forces to enhance the binding of boronic acid inhibitors by MR.
Collapse
Affiliation(s)
- Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Bearne SL. Capturing the free energy of transition state stabilization: insights from the inhibition of mandelate racemase. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220041. [PMID: 36633273 PMCID: PMC9835602 DOI: 10.1098/rstb.2022.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mandelate racemase (MR) catalyses the Mg2+-dependent interconversion of (R)- and (S)-mandelate. To effect catalysis, MR stabilizes the altered substrate in the transition state (TS) by approximately 26 kcal mol-1 (-ΔGtx), such that the upper limit of the virtual dissociation constant of the enzyme-TS complex is 2 × 10-19 M. Designing TS analogue inhibitors that capture a significant amount of ΔGtx for binding presents a challenge since there are a limited number of protein binding determinants that interact with the substrate and the structural simplicity of mandelate constrains the number of possible isostructural variations. Indeed, current intermediate/TS analogue inhibitors of MR capture less than or equal to 30% of ΔGtx because they fail to fully capitalize on electrostatic interactions with the metal ion, and the strength and number of all available electrostatic and H-bond interactions with binding determinants present at the TS. Surprisingly, phenylboronic acid (PBA), 2-formyl-PBA, and para-chloro-PBA capture 31-38% of ΔGtx. The boronic acid group interacts with the Mg2+ ion and multiple binding determinants that effect TS stabilization. Inhibitors capable of forming multiple interactions can exploit the cooperative interactions that contribute to optimum binding of the TS. Hence, maximizing interactions with multiple binding determinants is integral to effective TS analogue inhibitor design. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
3
|
Choi J, Neupane T, Baral R, Jee JG. Hydroxamic Acid as a Potent Metal-Binding Group for Inhibiting Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11020280. [PMID: 35204163 PMCID: PMC8868331 DOI: 10.3390/antiox11020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid is a potent metal-binding group for interacting with dicopper atoms, thereby inhibiting tyrosinase. Hydroxamate-containing molecules, including anticancer drugs targeting histone deacetylase, vorinostat and panobinostat, significantly inhibited mushroom tyrosinase, with inhibitory constants in the submicromolar range. Of the tested molecules, benzohydroxamic acid was the most potent. Its inhibitory constant of 7 nM indicates that benzohydroxamic acid is one of the most potent tyrosinase inhibitors. Results from differential scanning fluorimetry revealed that direct binding mediates inhibition. The enzyme kinetics were studied to assess the inhibitory mechanism of the hydroxamate-containing molecules. Experiments with B16F10 cell lysates confirmed that the new inhibitors are inhibitory against mammalian tyrosinase. Docking simulation data revealed intermolecular contacts between hydroxamate-containing molecules and tyrosinase.
Collapse
|
4
|
Douglas CD, Grandinetti L, Easton NM, Kuehm OP, Hayden JA, Hamilton MC, St Maurice M, Bearne SL. Slow-Onset, Potent Inhibition of Mandelate Racemase by 2-Formylphenylboronic Acid. An Unexpected Adduct Clasps the Catalytic Machinery. Biochemistry 2021; 60:2508-2518. [PMID: 34339165 DOI: 10.1021/acs.biochem.1c00374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
o-Carbonyl arylboronic acids such as 2-formylphenylboronic acid (2-FPBA) are employed in biocompatible conjugation reactions with the resulting iminoboronate adduct stabilized by an intramolecular N-B interaction. However, few studies have utilized these reagents as active site-directed enzyme inhibitors. We show that 2-FPBA is a potent reversible, slow-onset inhibitor of mandelate racemase (MR), an enzyme that has served as a valuable paradigm for understanding enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. Kinetic analysis of the progress curves for the slow onset of inhibition of wild-type MR using a two-step kinetic mechanism gave Ki and Ki* values of 5.1 ± 1.8 and 0.26 ± 0.08 μM, respectively. Hence, wild-type MR binds 2-FPBA with an affinity that exceeds that for the substrate by ∼3000-fold. K164R MR was inhibited by 2-FPBA, while K166R MR was not inhibited, indicating that Lys 166 was essential for inhibition. Unexpectedly, mass spectrometric analysis of the NaCNBH3-treated enzyme-inhibitor complex did not yield evidence of an iminoboronate adduct. 11B nuclear magnetic resonance spectroscopy of the MR·2-FPBA complex indicated that the boron atom was sp3-hybridized (δ 6.0), consistent with dative bond formation. Surprisingly, X-ray crystallography revealed the formation of an Nζ-B dative bond between Lys 166 and 2-FPBA with intramolecular cyclization to form a benzoxaborole, rather than the expected iminoboronate. Thus, when o-carbonyl arylboronic acid reagents are employed to modify proteins, the structure of the resulting product depends on the protein architecture at the site of modification.
Collapse
Affiliation(s)
- Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lia Grandinetti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicole M Easton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Meghan C Hamilton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Ran M, He J, Yan B, Liu W, Li Y, Fu Y, Li CJ, Yao Q. Catalyst-free generation of acyl radicals induced by visible light in water to construct C–N bonds. Org Biomol Chem 2021; 19:1970-1975. [DOI: 10.1039/d0ob02364g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new route to produce acyl radicals by the cleavage of Csp2–Csp2 bonds of α-diketones irradiated by visible light was developed and hydroxylamides or amides were selectively synthesized in water.
Collapse
Affiliation(s)
- Maogang Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Jiaxin He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Boyu Yan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Wenbo Liu
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | - Yi Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Yunfen Fu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Chao-Jun Li
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Department of Pharmacy
- Zunyi Medical University
- Zunyi
| |
Collapse
|
6
|
Sharma AN, Grandinetti L, Johnson ER, St Maurice M, Bearne SL. Potent Inhibition of Mandelate Racemase by Boronic Acids: Boron as a Mimic of a Carbon Acid Center. Biochemistry 2020; 59:3026-3037. [PMID: 32786399 DOI: 10.1021/acs.biochem.0c00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boronic acids have been successfully employed as inhibitors of hydrolytic enzymes. Typically, an enzymatic nucleophile catalyzing hydrolysis adds to the electrophilic boron atom forming a tetrahedral species that mimics the intermediate(s)/transition state(s) for the hydrolysis reaction. We show that para-substituted phenylboronic acids (PBAs) are potent competitive inhibitors of mandelate racemase (MR), an enzyme that catalyzes a 1,1-proton transfer rather than a hydrolysis reaction. The Ki value for PBA was 1.8 ± 0.1 μM, and p-Cl-PBA exhibited the most potent inhibition (Ki = 81 ± 4 nM), exceeding the binding affinity of the substrate by ∼4 orders of magnitude. Isothermal titration calorimetric studies with the wild-type, K166M, and H297N MR variants indicated that, of the two Brønsted acid-base catalysts Lys 166 and His 297, the former made the greater contribution to inhibitor binding. The X-ray crystal structure of the MR·PBA complex revealed the presence of multiple H-bonds between the boronic acid hydroxyl groups and the side chains of active site residues, as well as formation of a His 297 Nε2-B dative bond. The dramatic upfield change in chemical shift of 27.2 ppm in the solution-phase 11B nuclear magnetic resonance spectrum accompanying binding of PBA by MR was consistent with an sp3-hybridized boron, which was also supported by density-functional theory calculations. These unprecedented findings suggest that, beyond substituting boron at carbon centers participating in hydrolysis reactions, substitution of boron at the acidic carbon center of a substrate furnishes a new approach for generating inhibitors of enzymes catalyzing the deprotonation of carbon acid substrates.
Collapse
Affiliation(s)
- Amar Nath Sharma
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lia Grandinetti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Kozsup M, Keogan DM, Fitzgerald-Hughes D, Enyedy ÉA, Twamley B, Buglyó P, Griffith DM. Synthesis and characterisation of Co(iii) complexes of N-formyl hydroxylamines and antibacterial activity of a Co(iii) peptide deformylase inhibitor complex. Dalton Trans 2020; 49:6980-6988. [PMID: 32347254 DOI: 10.1039/d0dt01123a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The X-ray crystal structure and pKa values of GSK322, a well-known and effective peptide deformylase inhibitor and antibacterial drug candidate, are reported. The first examples of Co(iii) complexes of N-formyl hydroxylamines are reported. Reaction of N-hydroxy-N-phenylformamide (HFA) with [Co(tren)Cl2]Cl and [Co(tpa)Cl2]Cl (where tren = tris(2-aminoethyl)amine, tpa = tris(2-pyridylmethyl)amine) with one equivalent of NaOH in H2O afforded [Co(tren)(HFA-1H)](PF6)1.5Cl0.5 (1) and [Co(tpa)(HFA-1H)]Cl2 (2), respectively. X-ray crystal structures of both complexes revealed that the N-formyl hydroxylamine group acts as a bidentate ligand, coordinating the Co(iii) centres via the carbonyl oxygen and deprotonated hydroxy group (O,O'), a coordination mode typically observed for closely related mono-deprotonated hydroxamic acids. Reaction of the N-formyl hydroxylamine-based GSK322 with [Co(tpa)Cl2]Cl afforded the corresponding Co(iii) chaperone complex of the peptide deformylase inhibitor, [Co(tpa)(GSK322-1H)](PF6)2. GSK322 and [Co(tpa)(GSK322-1H)](PF6)2 exhibited better Gram-positive activity than Gram-negative, where low MICs (1.56-6.25 μM) were determined for S. aureus strains, independent of their antibiotic susceptibility.
Collapse
Affiliation(s)
- Máté Kozsup
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Donal M Keogan
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland. and SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| |
Collapse
|
8
|
Harty ML, Sharma AN, Bearne SL. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Metallomics 2020; 11:707-723. [PMID: 30843025 DOI: 10.1039/c8mt00330k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mandalate racemase (MR) from Pseudomonas putida requires a divalent metal cation, usually Mg2+, to catalyse the interconversion of the enantiomers of mandelate. Although the active site Mg2+ may be replaced by Mn2+, Co2+, or Ni2+, substitution by these metal ions does not markedly (<10-fold) alter the kinetic parameters Kappm, kappcat, and (kcat/Km)app for the substrates (R)- and (S)-mandelate, and the alternative substrate (S)-trifluorolactate. Viscosity variation experiments with Mn2+-MR showed that the metal ion plays a role in the uniform binding of the transition states for enzyme-substrate association, the chemical step, and enzyme-product dissociation. Surprisingly, the competitive inhibition constants (Ki) for inhibition of each metalloenzyme variant by benzohydroxamate did not vary significantly with the identity of the metal ion unlike the marked variation of the stability constants (K1) observed for M2+·BzH complex formation in solution. A similar trend was observed for the inhibition of the metalloenzyme variants by F-, except for Mg2+-MR, which bound F- tighter than would be predicted based on the stability constants for formation of M2+·F- complexes in solution. Thus, the enzyme modifies the enatic state of the bound metal ion cofactor so that the apparent electrophilicity of Mg2+ is enhanced, while that of Ni2+ is attenuated, resulting in a levelling effect relative to the trends observed for the free metals in solution.
Collapse
Affiliation(s)
- Matthew L Harty
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
9
|
Bearne SL, St Maurice M. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:113-160. [PMID: 28683916 DOI: 10.1016/bs.apcsb.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mandelate racemase (MR) from Pseudomonas putida catalyzes the Mg2+-dependent, 1,1-proton transfer reaction that racemizes (R)- and (S)-mandelate. MR shares a partial reaction (i.e., the metal ion-assisted, Brønsted base-catalyzed proton abstraction of the α-proton of carboxylic acid substrates) and structural features ((β/α)7β-barrel and N-terminal α + β capping domains) with a vast group of homologous, yet functionally diverse, enzymes in the enolase superfamily. Mechanistic and structural studies have developed this enzyme into a paradigm for understanding how enzymes such as those of the enolase superfamily overcome kinetic and thermodynamic barriers to catalyze the abstraction of an α-proton from a carbon acid substrate with a relatively high pKa value. Structural studies on MR bound to intermediate/transition state analogues have delineated those structural features that MR uses to stabilize transition states and enhance reaction rates of proton abstraction. Kinetic, site-directed mutagenesis, and structural studies have also revealed that the phenyl ring of the substrate migrates through the hydrophobic cavity within the active site during catalysis and that the Brønsted acid-base catalysts (Lys 166 and His 297) may be utilized as binding determinants for inhibitor recognition. In addition, structural studies on the adduct formed from the irreversible inhibition of MR by 3-hydroxypyruvate revealed that MR can form and deprotonate a Schiff-base with 3-hydroxypyruvate to yield an enol(ate)-aldehyde adduct, suggesting a possible evolutionary link between MR and the Schiff-base forming aldolases. As the archetype of the enolase superfamily, mechanistic and structural studies on MR will continue to enhance our understanding of enzyme catalysis and furnish insights into the evolution of enzyme function.
Collapse
|
10
|
Nagar M, Lietzan AD, St. Maurice M, Bearne SL. Potent Inhibition of Mandelate Racemase by a Fluorinated Substrate-Product Analogue with a Novel Binding Mode. Biochemistry 2014; 53:1169-78. [DOI: 10.1021/bi401703h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitesh Nagar
- Department
of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Adam D. Lietzan
- Department
of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Martin St. Maurice
- Department
of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L. Bearne
- Department
of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
11
|
Lietzan AD, Nagar M, Pellmann EA, Bourque JR, Bearne SL, St Maurice M. Structure of mandelate racemase with bound intermediate analogues benzohydroxamate and cupferron. Biochemistry 2012; 51:1160-70. [PMID: 22264153 DOI: 10.1021/bi2018514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg(2+)-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8-1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate-Mg(2+) distance becomes shorter, suggesting a tighter complex with the catalytic Mg(2+). In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | | | | | | | | | | |
Collapse
|
12
|
Narmandakh A, Bearne SL. Purification of recombinant mandelate racemase: Improved catalytic activity. Protein Expr Purif 2010; 69:39-46. [DOI: 10.1016/j.pep.2009.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|