1
|
Rahimova R, Nogaret P, Huteau V, Gelin M, Clément DA, Labesse G, Pochet S, Blanc-Potard AB, Lionne C. Structure-based design, synthesis and biological evaluation of a NAD + analogue targeting Pseudomonas aeruginosa NAD kinase. FEBS J 2023; 290:482-501. [PMID: 36036789 PMCID: PMC10087438 DOI: 10.1111/febs.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
Multidrug resistance is a major public health problem that requires the urgent development of new antibiotics and therefore the identification of novel bacterial targets. The activity of nicotinamide adenine dinucleotide kinase, NADK, is essential in all bacteria tested so far, including many human pathogens that display antibiotic resistance leading to the failure of current treatments. Inhibiting NADK is therefore a promising and innovative antibacterial strategy since there is currently no drug on the market targeting this enzyme. Through a fragment-based drug design approach, we have recently developed a NAD+ -competitive inhibitor of NADKs, which displayed in vivo activity against Staphylococcus aureus. Here, we show that this compound, a di-adenosine derivative, is inactive against the NADK enzyme from the Gram-negative bacteria Pseudomonas aeruginosa (PaNADK). This lack of activity can be explained by the crystal structure of PaNADK, which was determined in complex with NADP+ in this study. Structural analysis led us to design and synthesize a benzamide adenine dinucleoside analogue, active against PaNADK. This novel compound efficiently inhibited PaNADK enzymatic activity in vitro with a Ki of 4.6 μm. Moreover, this compound reduced P. aeruginosa infection in vivo in a zebrafish model.
Collapse
Affiliation(s)
- Rahila Rahimova
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Pauline Nogaret
- Laboratory of Pathogen Host Interactions (LPHI), Université de Montpellier, CNRS UMR 5235, France
| | - Valérie Huteau
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - David A Clément
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Sylvie Pochet
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | | | - Corinne Lionne
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| |
Collapse
|
2
|
Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3. Int J Mol Sci 2019; 21:ijms21010214. [PMID: 31892271 PMCID: PMC6982223 DOI: 10.3390/ijms21010214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
We report on the design, synthesis and molecular modeling study of conjugates of adenosine diphosphate (ADP) and morpholino nucleosides as potential selective inhibitors of poly(ADP-ribose)polymerases-1, 2 and 3. Sixteen dinucleoside pyrophosphates containing natural heterocyclic bases as well as 5-haloganeted pyrimidines, and mimicking a main substrate of these enzymes, nicotinamide adenine dinucleotide (NAD+)-molecule, have been synthesized in a high yield. Morpholino nucleosides have been tethered to the β-phosphate of ADP via a phosphoester or phosphoramide bond. Screening of the inhibiting properties of these derivatives on the autopoly(ADP-ribosyl)ation of PARP-1 and PARP-2 has shown that the effect depends upon the type of nucleobase as well as on the linkage between ADP and morpholino nucleoside. The 5-iodination of uracil and the introduction of the P–N bond in NAD+-mimetics have shown to increase inhibition properties. Structural modeling suggested that the P–N bond can stabilize the pyrophosphate group in active conformation due to the formation of an intramolecular hydrogen bond. The most active NAD+ analog against PARP-1 contained 5-iodouracil 2ʹ-aminomethylmorpholino nucleoside with IC50 126 ± 6 μM, while in the case of PARP-2 it was adenine 2ʹ-aminomethylmorpholino nucleoside (IC50 63 ± 10 μM). In silico analysis revealed that thymine and uracil-based NAD+ analogs were recognized as the NAD+-analog that targets the nicotinamide binding site. On the contrary, the adenine 2ʹ-aminomethylmorpholino nucleoside-based NAD+ analogs were predicted to identify as PAR-analogs that target the acceptor binding site of PARP-2, representing a novel molecular mechanism for selective PARP inhibition. This discovery opens a new avenue for the rational design of PARP-1/2 specific inhibitors.
Collapse
|
3
|
Sherstyuk YV, Zakharenko AL, Kutuzov MM, Sukhanova MV, Lavrik OI, Silnikov VN, Abramova TV. Synthesis of a series of NAD+ analogues, potential inhibitors of PARP 1, using ADP conjugates functionalized at the terminal phosphate group. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Paoletti J, Assairi L, Gelin M, Huteau V, Nahori MA, Dussurget O, Labesse G, Pochet S. 8-Thioalkyl-adenosine derivatives inhibit Listeria monocytogenes NAD kinase through a novel binding mode. Eur J Med Chem 2016; 124:1041-1056. [PMID: 27783975 DOI: 10.1016/j.ejmech.2016.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
Increased resistance of pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Biosynthetic pathways of several cofactors important for bacterial growth, such as nicotinamide adenine dinucleotide phosphate (NADP), have been proposed as a promising source of antibiotic targets. Nicotinamide adenine dinucleotide kinases (NADK; EC 2.7.1.23) are attractive for inhibitor development, since they catalyze the phosphorylation of NAD to NADP, which is an essential step of NADP metabolism. We previously synthesized diadenosine derivatives that inhibited NADK from two human pathogens, Listeria monocytogenes and Staphylococcus aureus, in the micromolar range. They behave as NAD mimics with the 5',5'-diphosphate group substituted by a 8,5' thioglycolic bridge. In an attempt to improve inhibitory potency, we designed new NAD mimics based on a single adenosine moiety harboring a larger derivatization attached to the C8 position and a small group at the 5' position. Here we report the synthesis of a series of 8-thioalkyl-adenosine derivatives containing various aryl and heteroaryl moieties and their evaluation as inhibitors of L. monocytogenes NADK1, S. aureus NADK and their human counterpart. Novel, sub-micromolar inhibitors of LmNADK1 were identified. Surprisingly, most LmNADK1 inhibitors demonstrated a high selectivity index against the close staphylococcal ortholog and the human NADK. Structural characterization of enzyme-inhibitor complexes revealed the original binding mode of these novel NAD mimics.
Collapse
Affiliation(s)
- Julie Paoletti
- Institut Pasteur, Unité de Chimie et Biocatalyse, 28 rue du Dr Roux, 75724, Paris cedex 15, France; CNRS, UMR3523, Paris, France
| | | | - Muriel Gelin
- CNRS, UMR5048, Université Montpellier, Centre de Biochimie Structurale, 29, route de Navacelles, 34090, Montpellier, France; INSERM, U1054, Montpellier, France
| | - Valérie Huteau
- Institut Pasteur, Unité de Chimie et Biocatalyse, 28 rue du Dr Roux, 75724, Paris cedex 15, France; CNRS, UMR3523, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 25 rue du Dr Roux, 75724 Paris cedex 15, France; INSERM, U604, Paris, France; INRA, USC2020, Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 25 rue du Dr Roux, 75724 Paris cedex 15, France; INSERM, U604, Paris, France; INRA, USC2020, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gilles Labesse
- CNRS, UMR5048, Université Montpellier, Centre de Biochimie Structurale, 29, route de Navacelles, 34090, Montpellier, France; INSERM, U1054, Montpellier, France
| | - Sylvie Pochet
- Institut Pasteur, Unité de Chimie et Biocatalyse, 28 rue du Dr Roux, 75724, Paris cedex 15, France; CNRS, UMR3523, Paris, France.
| |
Collapse
|
5
|
A versatile strategy for the design and synthesis of novel ADP conjugates and their evaluation as potential poly(ADP-ribose) polymerase 1 inhibitors. Mol Divers 2016; 21:101-113. [PMID: 27677737 DOI: 10.1007/s11030-016-9703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
A versatile strategy for the synthesis of [Formula: see text] mimetics was developed, involving an efficient pyrophosphate linkage formation in key conjugates containing a functional amino group which acts as useful reactive anchor for further derivatization. These [Formula: see text] mimetics consist of ADP conjugated through a diphosphate chain to an extended aliphatic linker bearing an aromatic acid residue. A number of conjugates containing aromatic carboxylic acids were found to inhibit poly(ADP-ribose) synthesis catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1). A new class of potential PARP-1 inhibitors mimicking [Formula: see text], a substrate in the PARP-1 catalyzed reaction, was proposed.
Collapse
|
6
|
Sherstyuk YV, Abramova TV. How To Form a Phosphate Anhydride Linkage in Nucleotide Derivatives. Chembiochem 2015; 16:2562-70. [PMID: 26420042 DOI: 10.1002/cbic.201500406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/25/2022]
Abstract
The fundamental roles of nucleoside triphosphates and nucleotide cofactors such as NAD(+) in biochemistry are well known. In recent decades, continuing research has revealed the key role of 5'-capped RNA and 5',5'-dinucleoside polyphosphates in the regulation of vitally important physiological processes. Last but not least, the commercial potential of nucleoside triphosphate synthesis can hardly be overestimated. Nevertheless, despite decades of investigation and the obvious topicality of the research on the chemical synthesis of the nucleotide compounds containing phosphate anhydride linkages, none of the existing procedures can be considered an up-to-date "gold standard". However, there are a number of fruitful synthetic approaches to forming phosphate anhydride linkages in satisfactory yield. These are summarized in this concise review, organized by the type of active phosphorous intermediate and reagents used.
Collapse
Affiliation(s)
- Yuliya V Sherstyuk
- Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrent'ev Avenue, 8, Novosibirsk, 630090, Russia
| | - Tatyana V Abramova
- Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrent'ev Avenue, 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
7
|
Arbade GK, Srivastava SK. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of NAD synthetase from methicillin-resistant Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:763-9. [PMID: 26057809 DOI: 10.1107/s2053230x15007906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is an important human and animal pathogen that causes a wide range of infections. The prevalence of multidrug-resistant S. aureus strains in both hospital and community settings makes it imperative to characterize new drug targets to combat S. aureus infections. In this context, enzymes involved in NAD metabolism and synthesis are significant drug targets as NAD is a central player in several cellular processes. NAD synthetase catalyzes the last step in the biosynthesis of nicotinamide adenine dinucleotide, making it a crucial intermediate enzyme linked to the biosynthesis of several amino acids, purine and pyrimidine nucleotides, coenzymes and antibiotics.
Collapse
Affiliation(s)
- Gajanan Kashinathrao Arbade
- Department of Biosciences and Technology, Defence Institute of Advanced Technology, Pune, Maharashtra 411 025, India
| | - Sandeep Kumar Srivastava
- Department of Biosciences and Technology, Defence Institute of Advanced Technology, Pune, Maharashtra 411 025, India
| |
Collapse
|
8
|
Ohba K, Koga Y, Nomura S, Nakata M. Functionalized aryl-β-C-glycoside synthesis by Barbier-type reaction using 2,4,6-triisopropylphenyllithium. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
|
10
|
Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T. Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Biochimie 2012; 95:309-19. [PMID: 23069387 DOI: 10.1016/j.biochi.2012.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6-2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Roussel B, Johnson-Farley N, Kerrigan JE, Scotto KW, Banerjee D, Felczak K, Pankiewicz KW, Gounder M, Lin H, Abali EE, Bertino JR. A second target of benzamide riboside: dihydrofolate reductase. Cancer Biol Ther 2012; 13:1290-8. [PMID: 22954684 DOI: 10.4161/cbt.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.
Collapse
Affiliation(s)
- Breton Roussel
- Department of Medicine, Biochemistry and Pharmacology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bi J, Wang H, Xie J. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol 2011; 226:331-40. [PMID: 20857400 DOI: 10.1002/jcp.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK-dependent), NmR pathway II (RNK-independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper.
Collapse
Affiliation(s)
- Jicai Bi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | | | |
Collapse
|
13
|
Sorci L, Pan Y, Eyobo Y, Rodionova I, Huang N, Kurnasov O, Zhong S, MacKerell AD, Zhang H, Osterman AL. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. CHEMISTRY & BIOLOGY 2009; 16:849-61. [PMID: 19716475 PMCID: PMC2770502 DOI: 10.1016/j.chembiol.2009.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/08/2009] [Accepted: 07/15/2009] [Indexed: 01/07/2023]
Abstract
The emergence of multidrug-resistant pathogens necessitates the search for new antibiotics acting on previously unexplored targets. Nicotinate mononucleotide adenylyltransferase of the NadD family, an essential enzyme of NAD biosynthesis in most bacteria, was selected as a target for structure-based inhibitor development. Using iterative in silico and in vitro screens, we identified small molecule compounds that efficiently inhibited target enzymes from Escherichia coli (ecNadD) and Bacillus anthracis (baNadD) but had no effect on functionally equivalent human enzymes. On-target antibacterial activity was demonstrated for some of the selected inhibitors. A 3D structure of baNadD was solved in complex with one of these inhibitors (3_02), providing mechanistic insights and guidelines for further improvement. Most importantly, the results of this study help validate NadD as a target for the development of antibacterial agents with potential broad-spectrum activity.
Collapse
Affiliation(s)
- Leonardo Sorci
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Yongping Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Yvonne Eyobo
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Nian Huang
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Oleg Kurnasov
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Shijun Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201,Corresponding authors. Andrei L. Osterman, phone: 858-795-5296, fax: 858-795-5249, , Hong Zhang, phone: 214-645-6372, fax: 214-645-5948, . Alexander MacKerell, phone, 410-706-7442, fax: 410-706-5017,
| | - Hong Zhang
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390,Corresponding authors. Andrei L. Osterman, phone: 858-795-5296, fax: 858-795-5249, , Hong Zhang, phone: 214-645-6372, fax: 214-645-5948, . Alexander MacKerell, phone, 410-706-7442, fax: 410-706-5017,
| | - Andrei L. Osterman
- Burnham Institute for Medical Research, La Jolla, CA 92037,Corresponding authors. Andrei L. Osterman, phone: 858-795-5296, fax: 858-795-5249, , Hong Zhang, phone: 214-645-6372, fax: 214-645-5948, . Alexander MacKerell, phone, 410-706-7442, fax: 410-706-5017,
| |
Collapse
|
14
|
Xie L, Xie L, Bourne PE. A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics 2009; 25:i305-12. [PMID: 19478004 PMCID: PMC2687974 DOI: 10.1093/bioinformatics/btp220] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional relationships between proteins that do not share global structure similarity can be established by detecting their ligand-binding-site similarity. For a large-scale comparison, it is critical to accurately and efficiently assess the statistical significance of this similarity. Here, we report an efficient statistical model that supports local sequence order independent ligand-binding-site similarity searching. Most existing statistical models only take into account the matching vertices between two sites that are defined by a fixed number of points. In reality, the boundary of the binding site is not known or is dependent on the bound ligand making these approaches limited. To address these shortcomings and to perform binding-site mapping on a genome-wide scale, we developed a sequence-order independent profile-profile alignment (SOIPPA) algorithm that is able to detect local similarity between unknown binding sites a priori. The SOIPPA scoring integrates geometric, evolutionary and physical information into a unified framework. However, this imposes a significant challenge in assessing the statistical significance of the similarity because the conventional probability model that is based on fixed-point matching cannot be applied. Here we find that scores for binding-site matching by SOIPPA follow an extreme value distribution (EVD). Benchmark studies show that the EVD model performs at least two-orders faster and is more accurate than the non-parametric statistical method in the previous SOIPPA version. Efficient statistical analysis makes it possible to apply SOIPPA to genome-based drug discovery. Consequently, we have applied the approach to the structural genome of Mycobacterium tuberculosis to construct a protein-ligand interaction network. The network reveals highly connected proteins, which represent suitable targets for promiscuous drugs.
Collapse
Affiliation(s)
- Lei Xie
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
15
|
Petrelli R, Sham YY, Chen L, Felczak K, Bennett E, Wilson D, Aldrich C, Yu JS, Cappellacci L, Franchetti P, Grifantini M, Mazzola F, Di Stefano M, Magni G, Pankiewicz KW. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues. Bioorg Med Chem 2009; 17:5656-64. [PMID: 19596199 DOI: 10.1016/j.bmc.2009.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 11/26/2022]
Abstract
Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.
Collapse
Affiliation(s)
- Riccardo Petrelli
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Link A, Heidler P, Kaiser M, Brun R. Parallel synthesis of a series of non-functional ATP/NAD analogs with activity against trypanosomatid parasites. Mol Divers 2009; 14:215-24. [PMID: 19484371 DOI: 10.1007/s11030-009-9160-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/09/2009] [Indexed: 11/29/2022]
Abstract
Non-functional analogs of the cofactors ATP and NAD are putative inhibitors of ATP- or NAD-dependant enzymes. Since pathogenic protozoa rely heavily on the salvage of purine nucleosides from the bloodstream of their host, such compounds are of interest as antiplasmodial and antitrypanosomal agents with a multitude of molecular targets. By replacing the negatively charged phosphate residues with a constrained unsaturated amide spacer and the nicotinamide moiety of NAD with various lipophilic substituents, 15 new ATP/NAD analogs were obtained in screening quantities. In these compounds, a 5'-desoxyadenosine moiety was conserved as key molecular recognition motif. The inhibition of P. falciparum and T. brucei ssp. in a whole parasite in vitro assay is reported.
Collapse
Affiliation(s)
- Andreas Link
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Strasse 17, 17487, Greifswald, Germany.
| | | | | | | |
Collapse
|
17
|
Shi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai) 2009; 41:352-61. [PMID: 19430699 DOI: 10.1093/abbs/gmp029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NAD kinase catalyzes the phosphorylation of NAD(H) to form NADP(H), using ATP as phosphoryl donor. It is the only key enzyme leading to the de novo NADP(+)/NADPH biosynthesis. Coenzymes such as NAD(H) and NADP(H) are known for their important functions. Recent studies have partially demonstrated that NAD kinase plays a crucial role in the regulation of NAD(H)/NADP(H) conversion. Here, the molecular properties, physiologic functions, and potential applications of NAD kinase are discussed.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
| | | | | | | |
Collapse
|
18
|
|
19
|
Bonnac L, Gao GY, Chen L, Felczak K, Bennett EM, Xu H, Kim T, Liu N, Oh H, Tonge PJ, Pankiewicz KW. Synthesis of 4-phenoxybenzamide adenine dinucleotide as NAD analogue with inhibitory activity against enoyl-ACP reductase (InhA) of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2007; 17:4588-91. [PMID: 17560106 DOI: 10.1016/j.bmcl.2007.05.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
The chemical synthesis of 4-phenoxybenzamide adenine dinucleotide (3), a NAD analogue which mimics isoniazid-NAD adduct and inhibits Mycobacterium tuberculosis NAD-dependent enoyl-ACP reductase (InhA), is reported. The 4-phenoxy benzamide riboside (1) has been prepared as a key intermediate, converted into its 5'-mononucleotide (2), and coupled with AMP imidazolide to give the desired NAD analogue 3. It inhibits InhA with IC50 = 27 microM.
Collapse
Affiliation(s)
- Laurent Bonnac
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|