1
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
3
|
Wang J, Cao X, Chen W, Xu J, Wu B. Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillusvitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. Int J Mol Sci 2021; 22:10778. [PMID: 34639118 PMCID: PMC8509150 DOI: 10.3390/ijms221910778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
An α-galactosidase-producing strain named Anoxybacillus vitaminiphilus WMF1, which catalyzed the reverse hydrolysis of d-galactose and glycerol to produce isofloridoside, was isolated from soil. The α-galactosidase (galV) gene was cloned and expressed in Escherichia coli. The galV was classified into the GH36 family with a molecular mass of 80 kDa. The optimum pH and temperature of galV was pH 7.5 and 60 °C, respectively, and it was highly stable at alkaline pH (6.0-9.0) and temperature below 65 °C. The specificity for p-nitrophenyl α-d-galactopyranoside was 70 U/mg, much higher than that for raffinose and stachyose. Among the metals and reagents tested, galV showed tolerance in the presence of various organic solvents. The kinetic parameters of the enzyme towards p-nitrophenyl α-d-galactopyranoside were obtained as Km (0.12 mM), Vmax (1.10 × 10-3 mM s-1), and Kcat/Km (763.92 mM-1 s-1). During the reaction of reverse hydrolysis, the enzyme exhibited high specificity towards the glycosyl donor galactose and acceptors glycerol, ethanol and ethylene glycol. Finally, the isofloridoside was synthesized using galactose as the donor and glycerol as the acceptor with a 26.6% conversion rate of galactose. This study indicated that galV might provide a potential enzyme source in producing isofloridoside because of its high thermal stability and activity.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Xuefei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Weihao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Jiaxing Xu
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Jiangxi Road, Huai’an 223300, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| |
Collapse
|
4
|
Song H, Chai W, Yang F, Ren M, Chen F, Guan W, Zhang S. Effects of Dietary Monoglyceride and Diglyceride Supplementation on the Performance, Milk Composition, and Immune Status of Sows During Late Gestation and Lactation. Front Vet Sci 2021; 8:714068. [PMID: 34485441 PMCID: PMC8415355 DOI: 10.3389/fvets.2021.714068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Monoglyceride and diglyceride (MGDG) have antiviral and antibacterial properties and act as emulsifiers to increase dietary lipid digestibility. The primary aim of this trial was to investigate the effects of dietary MGDG supplementation on the reproductive performance and health status of sows during late gestation and lactation. One hundred sows (Landrace × Large White, mean parity of 4.59) were randomly allocated to groups receiving two different diets with 4% soybean lipids or 4% MGDG from day 85 of gestation to day 21 of lactation. Milk samples were collected on the day of farrowing (colostrum) and on day 14 of lactation, and blood samples were collected from the sows on days 0, 14, and 21 of lactation. Compared with control sows, sows fed MGDG showed no significant differences in reproductive performance (P > 0.05), but sow back fat thickness loss decreased during lactation (P < 0.05). There was a significant decrease in TNF-α concentrations in colostrum in the MGDG-supplemented sows compared with that in the soybean lipid-supplemented sows (P < 0.05). Dietary MGDG supplementation decreased sow plasma IL-8 concentrations on day 0 of lactation and IL-18 concentrations on days 14 and 21 of lactation (P < 0.05). Administration of MGDG increased the glucose and total cholesterol concentrations in sow plasma on day 14 and day 21, respectively (P < 0.05). The findings in this study suggest that MGDG supplementation could be effective in reducing back fat loss, decreasing inflammatory factor levels, and controlling total cholesterol (TCHO) concentrations during lactation.
Collapse
Affiliation(s)
- Hanqing Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Chai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fei Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China.,Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Shulami S, Zehavi A, Belakhov V, Salama R, Lansky S, Baasov T, Shoham G, Shoham Y. Cross-utilization of β-galactosides and cellobiose in Geobacillus stearothermophilus. J Biol Chem 2020; 295:10766-10780. [PMID: 32493770 DOI: 10.1074/jbc.ra120.014029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Strains of the Gram-positive, thermophilic bacterium Geobacillus stearothermophilus possess elaborate systems for the utilization of hemicellulolytic polysaccharides, including xylan, arabinan, and galactan. These systems have been studied extensively in strains T-1 and T-6, representing microbial models for the utilization of soil polysaccharides, and many of their components have been characterized both biochemically and structurally. Here, we characterized routes by which G. stearothermophilus utilizes mono- and disaccharides such as galactose, cellobiose, lactose, and galactosyl-glycerol. The G. stearothermophilus genome encodes a phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) for cellobiose. We found that the cellobiose-PTS system is induced by cellobiose and characterized the corresponding GH1 6-phospho-β-glucosidase, Cel1A. The bacterium also possesses two transport systems for galactose, a galactose-PTS system and an ABC galactose transporter. The ABC galactose transport system is regulated by a three-component sensing system. We observed that both systems, the sensor and the transporter, utilize galactose-binding proteins that also bind glucose with the same affinity. We hypothesize that this allows the cell to control the flux of galactose into the cell in the presence of glucose. Unexpectedly, we discovered that G. stearothermophilus T-1 can also utilize lactose and galactosyl-glycerol via the cellobiose-PTS system together with a bifunctional 6-phospho-β-gal/glucosidase, Gan1D. Growth curves of strain T-1 growing in the presence of cellobiose, with either lactose or galactosyl-glycerol, revealed initially logarithmic growth on cellobiose and then linear growth supported by the additional sugars. We conclude that Gan1D allows the cell to utilize residual galactose-containing disaccharides, taking advantage of the promiscuity of the cellobiose-PTS system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valery Belakhov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Timor Baasov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Leutou AS, McCall JR, York R, Govindapur RR, Bourdelais AJ. Anti-Inflammatory Activity of Glycolipids and a Polyunsaturated Fatty Acid Methyl Ester Isolated from the Marine Dinoflagellate Karenia mikimotoi. Mar Drugs 2020; 18:md18030138. [PMID: 32120785 PMCID: PMC7143331 DOI: 10.3390/md18030138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
A new monogalactosyldiacylglycerol (MGDG), a known monogalactosylmonoacylglycerol (MGMG) and a known polyunsaturated fatty acid methyl ester (PUFAME) were isolated from the marine dinoflagellate Karenia mikimotoi. The planar structure of the glycolipids was elucidated using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses and comparisons to the known glycolipid to confirm its structure. The MGDG was characterized as 3-O-β-D-galactopyranosyl-1-O-3,6,9,12,15-octadecapentaenoyl-2-O-tetradecanoylglycerol 1. The MGMG and PUFAME were characterized as (2S)-3-O-β-D-galactopyranosyl-1-O-3,6,9,12,15-octadecapentaenoylglycerol 2 and Methyl (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate 3, respectively. The isolation of the PUFAME strongly supports the polyunsaturated fatty acid (PUFA) fragment of these glycolipids. The relative configuration of the sugar was deduced by comparisons of 3JHH values and proton chemical shifts with those of known glycolipids. All isolated compounds MGDG, MGMG and PUFAME 1-3 were evaluated for their antimicrobial and anti-inflammatory activity. All compounds modulated macrophage responses, with compound 3 exhibiting the greatest anti-inflammatory activity.
Collapse
|
7
|
Hou X, Du H, Yang R, Qi J, Huang Y, Feng S, Wu Y, Lin S, Liu Z, Jia AQ, Yuan S, Sun L. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi. Int J Mol Med 2018; 41:2793-2801. [PMID: 29484370 PMCID: PMC5846669 DOI: 10.3892/ijmm.2018.3502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidissima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima.
Collapse
Affiliation(s)
- Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Rui Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Jing Qi
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Yue Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Shuyun Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Zhixin Liu
- Guangxi Gui RenTang Co., Ltd., Fangchenggang 538021, P.R. China
| | - Ai-Qun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| |
Collapse
|
8
|
Shah S, Nagata M, Yamasaki S, Williams SJ. Total synthesis of a cyclopropane-fatty acid α-glucosyl diglyceride from Lactobacillus plantarum and identification of its ability to signal through Mincle. Chem Commun (Camb) 2016; 52:10902-5. [PMID: 27533919 DOI: 10.1039/c6cc05631h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a concise synthesis of glycolipid GL1 from Lactobacillus plantarum commencing from methyl α-d-glucopyroside. A Jacobsen hydrolytic kinetic resolution is used to generate a diastereomerically-pure glycidyl glucoside that was elaborated to the diglyceride by stepwise brominolysis, acylation with oleoyl chloride, and bromide-substitution by the tetrabutylammonium salt of 9S,10R-dihydrosterculic acid. GL1 and analogues were shown to signal through the glycolipid pattern recognition receptor Mincle.
Collapse
Affiliation(s)
- Sayali Shah
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
9
|
Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar Drugs 2014; 12:3634-59. [PMID: 24945415 PMCID: PMC4071594 DOI: 10.3390/md12063634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 12/05/2022] Open
Abstract
Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined.
Collapse
|
10
|
Wei W, Qi D, Zhao HZ, Lu ZX, Lv F, Bie X. Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol. Food Chem 2013; 141:3085-92. [DOI: 10.1016/j.foodchem.2013.05.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/18/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
|
11
|
Sashidhara KV, Singh SP, Misra S, Gupta J, Misra-Bhattacharya S. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi. Eur J Med Chem 2012; 50:230-5. [PMID: 22348826 DOI: 10.1016/j.ejmech.2012.01.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 12/01/2022]
Abstract
Bioassay guided fractionation of ethanolic extract of the leaves of Bauhinia racemosa led to the isolation of galactolipid and catechin class of the compounds (1-7) from the most active n-butanol fraction (F4). Among the active galactolipids, 1 emerged as the lead molecule which was active on both forms of lymphatic filarial parasite, Brugia malayi. It was found to be better than the standard drug ivermectin and diethylcarbamazine (DEC) in terms of dose and efficacy.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226 001, India.
| | | | | | | | | |
Collapse
|
12
|
|