1
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
2
|
Chatterjee C, Mohan GR, Chinnasamy HV, Biswas B, Sundaram V, Srivastava A, Matheshwaran S. Anti-mutagenic agent targeting LexA to combat antimicrobial resistance in mycobacteria. J Biol Chem 2024; 300:107650. [PMID: 39122002 PMCID: PMC11408154 DOI: 10.1016/j.jbc.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global threat demanding innovations for effective control of pathogens. The bacterial SOS response, regulated by the master regulators, LexA and RecA, contributes to AMR through advantageous mutations. Targeting the LexA/RecA system with a novel inhibitor could suppress the SOS response and potentially reduce the occurrence of AMR. RecA presents a challenge as a therapeutic target due to its conserved structure and function across species, including humans. Conversely, LexA which is absent in eukaryotes, can be potentially targeted, due to its involvement in SOS response which is majorly responsible for adaptive mutagenesis and AMR. Our studies combining bioinformatic, biochemical, biophysical, molecular, and cell-based assays present a unique inhibitor of mycobacterial LexA, wherein we show that the inhibitor interacts directly with the catalytic site residues of LexA of Mycobacterium tuberculosis (Mtb), consequently hindering its cleavage, suppressing SOS response thereby reducing mutation frequency and AMR.
Collapse
Affiliation(s)
- Chitral Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Gokul Raj Mohan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Hariharan V Chinnasamy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India; Kotak School of Sustainability, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Metzger M, Manhartseder S, Krausgruber L, Scholze L, Fuchs D, Wagner C, Stainer M, Grillari J, Kubin A, Wightman L, Dungel P. The Multifaceted Actions of PVP-Curcumin for Treating Infections. Int J Mol Sci 2024; 25:6140. [PMID: 38892328 PMCID: PMC11172534 DOI: 10.3390/ijms25116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.
Collapse
Affiliation(s)
- Magdalena Metzger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Stefan Manhartseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Leonie Krausgruber
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Lea Scholze
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - David Fuchs
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Carina Wagner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Michaela Stainer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Kubin
- Planta Naturstoffe Vertriebs GmbH, 1230 Vienna, Austria
| | | | - Peter Dungel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
5
|
Štambuk N, Konjevoda P, Brčić-Kostić K, Baković J, Štambuk A. New algorithm for the analysis of nucleotide and amino acid evolutionary relationships based on Klein four-group. Biosystems 2023; 233:105030. [PMID: 37717902 DOI: 10.1016/j.biosystems.2023.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Phylogenetics is the study of ancestral relationships among biological species. Such sequence analyses are often represented as phylogenetic trees. The branching pattern of each tree and its topology reflect the evolutionary relatedness between analyzed sequences. We present a Klein four-group algorithm (K4A) for the evolutionary analysis of nucleotide and amino acid sequences. Klein four-group set of operators consists of: identity e (U), and three elements-a = transition (C), b = transversion (G) and c = transition-transversion or complementarity (A). We generated Klein four-group based distance matrices of: 1. Cayley table (CK4), 2. Table rows (K4R), 3. Table columns (K4C), and 4. Euclidean 2D distance (K4E). The performance of the matrices was tested on a dataset of RecA proteins in bacteria, eukaryotes (Rad51 homolog) and archaea (RadA homolog). RecA and its functional homologs are found in all species, and are essential for the repair and maintenance of DNA. Consequently, they represent a good model for the study of evolutionary relationship of protein and nucleotide sequences. The ancestral relationship between the sequences was correctly classified by all K4A matrices concerning general topology. All distance matrices exhibited small variations among species, and overall results of tree classification were in agreement with the general patterns obtained by standard BLOSUM and PAM substitution matrices. During the evolution of a code there is a phase of optimization of system rules, the ambiguity of a code is eliminated, and the system starts producing specific components. Klein four-group algorithm is consistent with the concept of ambiguity reduction. It also enables the use of different genetic code table variants optimized for particular transitions in evolution based on biological specificity.
Collapse
Affiliation(s)
- Nikola Štambuk
- Centre for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Krunoslav Brčić-Kostić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Josip Baković
- University Hospital Dubrava, Department of Surgery, Avenija Gojka Šuška 6, HR-10000, Zagreb, Croatia
| | - Albert Štambuk
- Faculty of Kinesiology, University of Zagreb, Horvaćanski zavoj 15, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
7
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
8
|
The Error-Prone Polymerase DnaE2 Mediates the Evolution of Antibiotic Resistance in Persister Mycobacterial Cells. Antimicrob Agents Chemother 2022; 66:e0177321. [PMID: 35156855 DOI: 10.1128/aac.01773-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Applying antibiotics to susceptible bacterial cultures generates a minor population of persisters that remain susceptible to antibiotics but can endure them for extended periods. Recent reports suggest that antibiotic persisters (APs) of mycobacteria experience oxidative stress and develop resistance upon treatment with lethal doses of ciprofloxacin or rifampicin. However, the mechanisms driving the de novo emergence of resistance remained unclear. Here, we show that mycobacterial APs activate the SOS response, resulting in the upregulation of the error-prone DNA polymerase DnaE2. The sustained expression of dnaE2 in APs led to mutagenesis across the genome and resulted in the rapid evolution of resistance to antibiotics. Inhibition of RecA by suramin, an anti-Trypanosoma drug, reduced the rate of conversion of persisters to resistors in a diverse group of bacteria. Our study highlights suramin's novel application as a broad-spectrum agent in combating the development of drug resistance.
Collapse
|
9
|
Xie Q, Wang Y, Zhang M, Wu S, Wei W, Xiao W, Wang Y, Zhao J, Liu N, Jin Y, Wu J, Xu P. Recombinant HNP-1 Produced by Escherichia coli Triggers Bacterial Apoptosis and Exhibits Antibacterial Activity against Drug-Resistant Bacteria. Microbiol Spectr 2022; 10:e0086021. [PMID: 35019682 PMCID: PMC8754131 DOI: 10.1128/spectrum.00860-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical applications have been hampered by challenges during mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that Escherichia coli expressing full-length preproHNP-1 secretes a soluble form of HNP-1, which can be recovered from the total cell lysate after isopropyl thio-β-d-galactoside (IPTG) induction and ultrafiltration. Label-free quantitative proteomics and co-immunoprecipitation experiments revealed that HNP-1 induces cell apoptosis in bacteria by causing DNA and membrane damage. Notably, we found that HNP-1 disrupts the DNA damage response pathway by interfering with the binding of RecA to single-stranded DNA (ssDNA). Further experiments demonstrated that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results indicated that recombinant protein expression may be a simple and cost-effective solution to produce HNP-1 and that RecA inhibition via HNP-1 may serve as an alternative strategy to counteract antibiotic resistance. IMPORTANCE Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical application has been hampered by the difficulty of mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that recombinant protein expression combined with ultrafiltration may be a simple and cost-effective solution to HNP-1 production. We further found that HNP-1 induces bacterial apoptosis and prevents its SOS repair pathway from binding to the RecA protein, which may be a new antibacterial mechanism. In addition, we showed that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results provide new insights into the production and antibacterial mechanism of HNP-1, both of which may promote its clinical application.
Collapse
Affiliation(s)
- Qi Xie
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yin Wang
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Mengmeng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shujia Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Wei Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Jinchao Zhao
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Nan Liu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ping Xu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
- Anhui Medical University, Hefei, China
- School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ren Z, Zhang Y, Wu T, Xue Q, Wang S. Simple and sensitive detection of deoxyribonucleic acid using a RecA-GFP fusion protein-DNA filament as probe. LUMINESCENCE 2021; 36:1272-1276. [PMID: 33837604 DOI: 10.1002/bio.4053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
A simple, rapid and highly sensitive method for detection of double-stranded DNA (dsDNA) was developed using a novel fluorescence probe composed of a RecA-GFP fusion protein that had specific recognition of ssDNA complexes (RecA-GFP-DNA filament). The RecA-GFP fusion protein not only had strong fluorescence, but could also occur by homologous recombination. In the presence of the target dsDNA, the complementary ssDNA of the RecA-GFP-DNA filaments invaded one end of the dsDNA chain. In addition, the other end of the ssDNA dissociated the RecA-GFP filaments. An assay of the probe showed a linear relationship with dsDNA concentration in the range 1-11 nM, with a correlation coefficient of 0.9923. The limit of detection for dsDNA was determined experimentally to be 0.3 nM (3δ). Compared with conventional methods, this method has the advantages of simple operation, high specificity, and high sensitivity.
Collapse
Affiliation(s)
- Zijing Ren
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yuanfu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Tao Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Shuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Zhou Z, Pan Q, Lv X, Yuan J, Zhang Y, Zhang MX, Ke M, Mo XM, Xie YL, Liu Y, Chen T, Liang M, Yin F, Liu L, Zhou Y, Qiao K, Liu R, Li Z, Wong NK. Structural insights into the inhibition of bacterial RecA by naphthalene polysulfonated compounds. iScience 2021; 24:101952. [PMID: 33458611 PMCID: PMC7797525 DOI: 10.1016/j.isci.2020.101952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
As a promising target for alternative antimicrobials, bacterial recombinase A (RecA) protein has attracted much attention for its roles in antibiotic-driven SOS response and mutagenesis. Naphthalene polysulfonated compounds (NPS) such as suramin have previously been explored as antibiotic adjuvants targeting RecA, although the underlying structural bases for RecA-ligand interactions remain obscure. Based on our in silico predictions and documented activity of NPS in vitro, we conclude that the analyzed NPS likely interact with Tyr103 (Y103) and other key residues in the ATPase activity center (pocket A). For validation, we generated recombinant RecA proteins (wild-type versus Y103 mutant) to determine the binding affinities for RecA protein interactions with suramin and underexamined NPS in isothermal titration calorimetry. The corresponding dissociation constants (K d) ranged from 11.5 to 18.8 μM, and Y103 was experimentally shown to be critical to RecA-NPS interactions.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Qing Pan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China
| | - Xinchen Lv
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jing Yuan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ming-Xia Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Ming Ke
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao-Mei Mo
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yong-Li Xie
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Kun Qiao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
12
|
Yakimov A, Bakhlanova I, Baitin D. Targeting evolution of antibiotic resistance by SOS response inhibition. Comput Struct Biotechnol J 2021; 19:777-783. [PMID: 33552448 PMCID: PMC7843400 DOI: 10.1016/j.csbj.2021.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking. This review highlights the current knowledge of the protein targets for the evolution of antibiotic resistance and the inhibitory effects of some new compounds on this pathway.
Collapse
Affiliation(s)
- Alexander Yakimov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation
| | - Irina Bakhlanova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| | - Dmitry Baitin
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| |
Collapse
|
13
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
14
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Bellio P, Mancini A, Di Pietro L, Cracchiolo S, Franceschini N, Reale S, de Angelis F, Perilli M, Amicosante G, Spyrakis F, Tondi D, Cendron L, Celenza G. Inhibition of the transcriptional repressor LexA: Withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials. Life Sci 2019; 241:117116. [PMID: 31790690 DOI: 10.1016/j.lfs.2019.117116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
AIMS LexA protein is a transcriptional repressor which regulates the expression of more than 60 genes belonging to the SOS global regulatory network activated by damages to bacterial DNA. Considering its role in bacteria, LexA represents a key target to counteract bacterial resistance: the possibility to modulate SOS response through the inhibition of LexA autoproteolysis may lead to reduced drug susceptibility and acquisition of resistance in bacteria. In our study we investigated boron-containing compounds as potential inhibitors of LexA self-cleavage. MAIN METHODS The inhibition of LexA self-cleavage was evaluated by following the variation of the first-order rate constant by LC-MS at several concentrations of inhibitors. In silico analysis was applied to predict the binding orientations assumed by the inhibitors in the protein active site, upon covalent binding to the catalytic Ser-119. Bacterial filamentation assay was used to confirm the ability of (3-aminophenyl)boronic acid to interfere with SOS induced activation. KEY FINDINGS Boron-containing compounds act as inhibitors of LexA self-cleavage, as also confirmed by molecular modelling where the compounds interact with the catalytic Ser-119, via the formation of an acyl-enzyme intermediate. A new equation for the description of the inhibition potency in an autoproteolytic enzyme is also disclosed. Bacterial filamentation assays strongly support the interference of our compounds with the SOS response activation through inhibition of septum formation. SIGNIFICANCE The obtained results demonstrated that phenylboronic compounds could be exploited in a hit-to-lead optimization process toward effective LexA self-cleavage inhibitors. They would sustain the rehabilitation in therapy of several dismissed antibiotics.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Cracchiolo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Samantha Reale
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco de Angelis
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
16
|
Blázquez J, Rodríguez-Beltrán J, Matic I. Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented. Annu Rev Microbiol 2019; 72:209-230. [PMID: 30200850 DOI: 10.1146/annurev-micro-090817-062139] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.
Collapse
Affiliation(s)
- Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain; .,Unidad de Enfermedades Infecciosas, Microbiologia y Medicina Preventiva, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain.,Red Española de Investigacion en Patologia Infecciosa, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ivan Matic
- Faculté de Médecine Paris Descartes, INSERM 1001, CNRS, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
17
|
Zhou ZY, Yuan J, Pan Q, Mo XM, Xie YL, Yin F, Li Z, Wong NK. Computational elucidation of the binding mechanisms of curcumin analogues as bacterial RecA inhibitors. RSC Adv 2019; 9:19869-19881. [PMID: 35519399 PMCID: PMC9065326 DOI: 10.1039/c9ra00064j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance (AMR) presents as a serious threat to global public health, which urgently demands action to develop alternative antimicrobial strategies with minimized selective pressure. The bacterial SOS response regulator RecA has emerged as a promising target in the exploration of new classes of antibiotic adjuvants, as RecA has been implicated in bacterial mutagenesis and thus AMR development through its critical roles in error-prone DNA repair. The natural product curcumin has been reported to be an effective RecA inhibitor in several Gram-negative bacteria, but details on the underlying mechanisms are wanting. In order to bridge the gap in how curcumin operates as a RecA inhibitor, we used computational approaches to model interactions between RecA protein and curcumin analogues. We first identified potential binding sites on E. coli RecA protein and classified them into four major binding pockets based on biological literature and computational findings from multiple in silico calculations. In docking analysis, curcumin-thalidomide hybrids were predicted to be superior binders of RecA compared with bis-(arylmethylidene)acetone curcumin analogues, which was further confirmed by MMGBSA calculations. Overall, this work provides mechanistic insights into bacterial RecA protein as a target for curcumin-like compounds and offers a theoretical basis for rational design and development of future antibiotic adjuvants.
Collapse
Affiliation(s)
- Zi-Yuan Zhou
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology Shenzhen 518112 China
- Department of Chemical Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Jing Yuan
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology Shenzhen 518112 China
| | - Qing Pan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University Shenzhen 518055 China
| | - Xiao-Mei Mo
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology Shenzhen 518112 China
| | - Yong-Li Xie
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology Shenzhen 518112 China
| | - Feng Yin
- Department of Chemical Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Zigang Li
- Department of Chemical Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology Shenzhen 518112 China
| |
Collapse
|
18
|
Choudhary E, Sharma R, Kumar Y, Agarwal N. Conditional Silencing by CRISPRi Reveals the Role of DNA Gyrase in Formation of Drug-Tolerant Persister Population in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2019; 9:70. [PMID: 30972304 PMCID: PMC6443821 DOI: 10.3389/fcimb.2019.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Drug tolerance in mycobacterial pathogens is a global concern. Fluoroquinolone (FQ) treatment is widely used for induction of persisters in bacteria. Although FQs that target DNA gyrase are currently used as second-line anti-tuberculosis (TB) drugs, little is known about their impact on Mycobacterium tuberculosis (Mtb) persister formation. Here we explored the CRISPRi-based genetic repression for better understanding the effect of DNA gyrase depletion on Mtb physiology and response to anti-TB drugs. We find that suppression of DNA gyrase drastically affects intra- and extracellular growth of Mtb. Interestingly, gyrase depletion in Mtb leads to activation of RecA/LexA-mediated SOS response and drug tolerance via induction of persister subpopulation. Chemical inhibition of RecA in gyrase-depleted bacteria results in reversion of persister phenotype and better killing by antibiotics. This study provides evidence that inhibition of SOS response can be advantageous in improving the efficacy of anti-TB drugs and shortening the duration of current TB treatment.
Collapse
Affiliation(s)
- Eira Choudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Rishabh Sharma
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
19
|
SOS Response Inhibitory Properties by Potential Probiotic Formulations of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 Obtained by Solid-State Fermentation. Curr Microbiol 2019; 76:312-319. [DOI: 10.1007/s00284-018-01623-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
20
|
Palanisamy N. Identification of putative drug targets and annotation of unknown proteins in Tropheryma whipplei. Comput Biol Chem 2018; 76:130-138. [PMID: 30005292 DOI: 10.1016/j.compbiolchem.2018.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 01/02/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Tropheryma whipplei (T. whipplei) is the causative agent of Whipple's disease and blood culture-negative endocarditis. Due to the variability of symptoms, the disease is often poorly diagnosed. Treatment for this bacterial infection is often lengthy, and improper uptake of antibiotics has resulted in relapses in many patients. In the present study, using available bioinformatic tools and databases such as the Cluster Database at High Identity with Tolerance (CD-HIT), the Basic Local Alignment Search Tool for proteins (BLASTp), the Database of Essential Genes (DEG), and the DrugBank database, 13 putative drug targets were identified in T. whipplei by subtractive genome analysis that could be targeted with currently available drugs (experimental or approved). Further, a 3D model was generated for one of these putative drug targets, the T. whipplei DNA ligase, and in silico docking was performed with pyridochromanone and adenosine-derived inhibitors using the AutoDock Vina. Additionally, many of the T. whipplei protein sequences in the National Center for Biotechnology Information (NCBI) protein database were unknown/uncurated. Using available web servers e.g. the KEGG Automatic Annotation Server (KAAS), the BLASTp, the Conserved Domain Architecture Retrieval Tool (CDAT) and the Protein families (Pfam), the function/remote/domain homology for nearly 80% of these uncurated protein sequences were annotated. The data obtained in the present study will aid physicians and researchers alike in curbing this bacterial infection.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- Molecular and Cellular Engineering Group, BioQuant, University of Heidelberg, Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria. BIOSENSORS-BASEL 2018; 8:bios8010025. [PMID: 29547508 PMCID: PMC5872073 DOI: 10.3390/bios8010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
A model system based on the Escherichia coli MG1655 (pRecA-lux) Lux-biosensor was used to evaluate the ability of the fermentates of eight probiotic strains to reduce the SOS response stimulated by ciprofloxacin in bacteria and mutagenesis mediated by it. Preliminary attempts to estimate the chemical nature of active components of the fermentates were conducted.
Collapse
|
22
|
Mo CY, Culyba MJ, Selwood T, Kubiak JM, Hostetler ZM, Jurewicz AJ, Keller PM, Pope AJ, Quinn A, Schneck J, Widdowson KL, Kohli RM. Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership. ACS Infect Dis 2018; 4:349-359. [PMID: 29275629 DOI: 10.1021/acsinfecdis.7b00122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.
Collapse
Affiliation(s)
- Charlie Y. Mo
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Trevor Selwood
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M. Kubiak
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Anthony J. Jurewicz
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Paul M. Keller
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Andrew J. Pope
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Amy Quinn
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jessica Schneck
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Katherine L. Widdowson
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rahul M. Kohli
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Yakimov A, Pobegalov G, Bakhlanova I, Khodorkovskii M, Petukhov M, Baitin D. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide. Nucleic Acids Res 2017; 45:9788-9796. [PMID: 28934502 PMCID: PMC5766188 DOI: 10.1093/nar/gkx687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance.
Collapse
Affiliation(s)
- Alexander Yakimov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Georgii Pobegalov
- Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Irina Bakhlanova
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | | | - Michael Petukhov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Dmitry Baitin
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| |
Collapse
|
24
|
Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS One 2017; 12:e0183327. [PMID: 28837642 PMCID: PMC5570288 DOI: 10.1371/journal.pone.0183327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Collapse
Affiliation(s)
- John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - Frank Guarnieri
- PAKA Pulmonary Pharmaceuticals, Acton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G, Perilli M, Celenza G. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 29:11-18. [PMID: 28515022 DOI: 10.1016/j.phymed.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. PURPOSE Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. METHODS The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. RESULTS Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. CONCLUSION In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Marisa Piovano
- Department of Chemistry, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso, 6, Chile
| | - Marcello Nicoletti
- Department of Environmental Biology, University Sapienza, P.le A. Moro, 00185, Rome, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy.
| |
Collapse
|
26
|
Zanni R, Galvez-Llompart M, Machuca J, Garcia-Domenech R, Recacha E, Pascual A, Rodriguez-Martinez JM, Galvez J. Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem 2017; 137:233-246. [PMID: 28595068 DOI: 10.1016/j.ejmech.2017.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
Abstract
The control of antimicrobial resistance (AMR) seems to have come to an impasse. The use and abuse of antibacterial drugs has had major consequences on the genetic mutability of both pathogenic and nonpathogenic microorganisms, leading to the development of new highly resistant strains. Because of the complexity of this situation, an in silico strategy based on QSAR molecular topology was devised to identify synthetic molecules as antimicrobial agents not susceptible to one or several mechanisms of resistance such as: biofilms formation (BF), ionophore (IA) activity, epimerase (EI) activity or SOS system (RecA inhibition). After selecting a group of 19 compounds, five of them showed significant antimicrobial activity against several strains of Staphylococcus (2 S. aureus, including 1 methicillin resistant, and 1 S. epidermidis), with MIC values between 16 and 32 mg/L. Among the compounds active on RecA, one showed a marked activity in decreasing RecA gene expression in Escherichia coli.
Collapse
Affiliation(s)
- Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain.
| | - Maria Galvez-Llompart
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Jesus Machuca
- Department of Microbiology, University of Seville, Seville, Spain
| | - Ramon Garcia-Domenech
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Esther Recacha
- Department of Microbiology, University of Seville, Seville, Spain
| | - Alvaro Pascual
- Department of Microbiology, University of Seville, Seville, Spain
| | | | - Jorge Galvez
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
27
|
Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR. RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance. Cell Chem Biol 2016; 23:381-91. [PMID: 26991103 DOI: 10.1016/j.chembiol.2016.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 11/25/2022]
Abstract
Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, β-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life.
Collapse
Affiliation(s)
- Md Kausar Alam
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Areej Alhhazmi
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John F DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
28
|
Huerta-Uribe A, Marjenberg ZR, Yamaguchi N, Fitzgerald S, Connolly JPR, Carpena N, Uvell H, Douce G, Elofsson M, Byron O, Marquez R, Gally DL, Roe AJ. Identification and Characterization of Novel Compounds Blocking Shiga Toxin Expression in Escherichia coli O157:H7. Front Microbiol 2016; 7:1930. [PMID: 27965652 PMCID: PMC5127787 DOI: 10.3389/fmicb.2016.01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022] Open
Abstract
Infections caused by Shiga toxin (Stx)-producing E. coli strains constitute a health problem, as they are problematic to treat. Stx production is a key virulence factor associated with the pathogenicity of enterohaemorrhagic E. coli (EHEC) and can result in the development of haemolytic uremic syndrome in infected patients. The genes encoding Stx are located on temperate lysogenic phages integrated into the bacterial chromosome and expression of the toxin is generally coupled to phage induction through the SOS response. We aimed to find new compounds capable of blocking expression of Stx type 2 (Stx2) as this subtype of Stx is more strongly associated with human disease. High-throughput screening of a small-molecule library identified a lead compound that reduced Stx2 expression in a dose-dependent manner. We show that the optimized compound interferes with the SOS response by directly affecting the activity and oligomerization of RecA, thus limiting phage activation and Stx2 expression. Our work suggests that RecA is highly susceptible to inhibition and that targeting this protein is a viable approach to limiting production of Stx2 by EHEC. This type of approach has the potential to limit production and transfer of other phage induced and transduced determinants.
Collapse
Affiliation(s)
- Alejandro Huerta-Uribe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Zoe R Marjenberg
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Nao Yamaguchi
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh Edinburgh, UK
| | - Stephen Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh Edinburgh, UK
| | - James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Hanna Uvell
- Laboratories for Chemical Biology Umeå, Department of Chemistry, Umeå University Umeå, Sweden
| | - Gillian Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Michael Elofsson
- Laboratories for Chemical Biology Umeå, Department of Chemistry, Umeå University Umeå, Sweden
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Rudi Marquez
- Department of Chemistry, Xi'an Jiaotong-Liverpool University Suzhou, China
| | - David L Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh Edinburgh, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
29
|
Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol 2016; 100:5505-14. [PMID: 26960318 DOI: 10.1007/s00253-016-7415-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Curcumin, a naturally occurring phenolic compound, has been shown to exhibit antimicrobial activity against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, etc., but the mechanism remains unclear. The present study was designed to investigate the novel antibacterial mechanism of curcumin that shows an apoptosis-like response in E. coli. We found that curcumin induces membrane damage at relatively high concentrations, but there was no effect at the minimum inhibitory concentration (MIC). At the MIC, curcumin-treated cells displayed various apoptotic markers such as reactive oxygen species (ROS) accumulation, membrane depolarization, and Ca(2+) influx. Expression of RecA protein, which mediates a bacterial apoptosis-like response, was also increased by curcumin. In order to evaluate the influence of RecA on the appearance of other apoptotic markers, phosphatidylserine (PS) exposure and DNA fragmentation were examined and compared with a RecA deletion strain (ΔRecA). These markers were detected in E. coli wild-type cells, but not in ΔRecA cells. In conclusion, our data demonstrate that curcumin induces an apoptosis-like response in E. coli that involves RecA.
Collapse
|
30
|
Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K, Vijayan M. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. J Biosci 2015; 40:13-30. [PMID: 25740138 DOI: 10.1007/s12038-014-9497-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the 'switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.
Collapse
Affiliation(s)
- Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012
| | | | | | | | | | | |
Collapse
|
31
|
Torrente MP, Castellano LM, Shorter J. Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS One 2014; 9:e110115. [PMID: 25299406 PMCID: PMC4192545 DOI: 10.1371/journal.pone.0110115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.
Collapse
Affiliation(s)
- Mariana P. Torrente
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Castellano
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nautiyal A, Patil KN, Muniyappa K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother 2014; 69:1834-43. [PMID: 24722837 DOI: 10.1093/jac/dku080] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. METHODS We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. RESULTS We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC(50) values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. CONCLUSIONS Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Bellio P, Brisdelli F, Perilli M, Sabatini A, Bottoni C, Segatore B, Setacci D, Amicosante G, Celenza G. Curcumin inhibits the SOS response induced by levofloxacin in Escherichia coli. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:430-434. [PMID: 24252336 DOI: 10.1016/j.phymed.2013.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 06/02/2023]
Abstract
The role of RecA protein in bacterial resistance to antibiotics makes this protein attractive from a pharmacological point of view. In this study we demonstrate that curcumin is able to inhibit the SOS response in Escherichia coli induced by levofloxacin. The blaTEM-1 gene has been placed under the control of the LexA-binding box and used as reporter gene. The expression of TEM-1 β-lactamase enzyme was increased in the presence of ssDNA induced by levofloxacin, while, the presence of curcumin at 8μg/ml, reduced dramatically the expression of the reporter gene. Moreover a simple microplate assay suitable for high-throughput screening has been developed.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Alessia Sabatini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Carlo Bottoni
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Domenico Setacci
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Italy.
| |
Collapse
|
34
|
Schröder W, Goerke C, Wolz C. Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus. J Antimicrob Chemother 2012; 68:529-38. [PMID: 23169893 DOI: 10.1093/jac/dks456] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES RecA is the key enzyme involved in DNA repair, recombination and induction of the SOS response and is central to the development of antibiotic resistance. Here we assessed the interaction of two different gyrase inhibitors, ciprofloxacin (a fluoroquinolone) and novobiocin (an aminocoumarin), on RecA activity and the SOS response in Staphylococcus aureus. METHODS The influence of different gyrase inhibitors on the SOS response of S. aureus (including recA and lexA mutants) was analysed by northern blot analysis, real-time RT-PCR, western blot analysis and promoter activity assays. Recombination as well as mutation frequencies were determined for the different antibiotic combinations. RESULTS We verified that ciprofloxacin leads to RecA activation and therefore induction of the SOS response. In contrast, novobiocin treatment resulted in an inhibition of recA transcription independent of LexA. When novobiocin and ciprofloxacin were added simultaneously, recA was reduced to the same level as with novobiocin alone. In combination, novobiocin also partially reduces the ciprofloxacin-mediated induction of the LexA target gene umuC (error-prone polymerase). Apart from reducing recA and umuC expression, novobiocin also inhibited the frequency of recombination, mutation and the formation of non-haemolytic variants. CONCLUSION In summary, aminocoumarins inhibit recA expression in S. aureus and probably delay the process of developing antibiotic resistance and gene transfer. A clinical re-evaluation of these compounds as well as designing more applicable derivatives should be considered.
Collapse
Affiliation(s)
- Wiebke Schröder
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse-6, 72076 Tübingen, Germany
| | | | | |
Collapse
|
35
|
Krokhotin A, Lundgren M, Niemi AJ. Solitons and collapse in the λ-repressor protein. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021923. [PMID: 23005801 DOI: 10.1103/physreve.86.021923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/09/2012] [Indexed: 06/01/2023]
Abstract
The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding λ-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability, and folding pathways of the λ-repressor protein, which controls the transition from the lysogenic to the lytic state. We first investigate the supersecondary helix-loop helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schrödinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the λ-repressor protein. We introduce a coarse-grained energy function to model the backbone in terms of the C(α) atoms and the side chains in terms of the relative orientation of the C(β) atoms. We describe the folding dynamics in terms of relaxation dynamics and find that the folded configuration can be reached from a very generic initial configuration. We conclude that folding is dominated by the temporal ordering of soliton formation. In particular, the third soliton should appear before the first and second. Otherwise, the DNA binding turn does not acquire its correct structure. We confirm the stability of the folded configuration by repeated heating and cooling simulations.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Physics and Astronomy, Uppsala University, PO Box 803, S-75108, Uppsala, Sweden.
| | | | | |
Collapse
|
36
|
The antibiotic resistome: challenge and opportunity for therapeutic intervention. Future Med Chem 2012; 4:347-59. [PMID: 22393941 DOI: 10.4155/fmc.12.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the relevance of infectious disease as main causes of human morbidity and mortality, the development of new antibacterials is not among the highest priorities for pharmaceutical companies. Regulatory and economic issues, together with the lack of novel targets, might justify the reduced rate of discovery of new antimicrobials. With the increasing number of antibiotic resistant pathogens, the mechanisms of resistance appear as appealing alternatives for developing new drugs. Defining the elements that contribute to the characteristic phenotype of susceptibility to antibiotics of a given bacterial species, will serve to find those targets. Recent information on the elements forming part of bacterial intrinsic resistomes and on the inhibitors of resistance currently under development are presented. The possibility of developing new therapeutic procedures based on the administration, together with antibiotics of specific metabolic intermediates capable of increasing the susceptibility to antibiotics by altering bacterial physiology, are also discussed.
Collapse
|
37
|
Du L, Luo Y. Structure of a hexameric form of RadA recombinase from Methanococcus voltae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:511-6. [PMID: 22691778 PMCID: PMC3374503 DOI: 10.1107/s1744309112010226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022]
Abstract
Archaeal RadA proteins are close homologues of eukaryal Rad51 and DMC1 proteins and are remote homologues of bacterial RecA proteins. For the repair of double-stranded breaks in DNA, these recombinases promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. This DNA-repair function also plays a key role in the resistance of cancer cells to chemotherapy and radiotherapy and in the resistance of bacterial cells to antibiotics. A hexameric form of a truncated Methanococcus voltae RadA protein devoid of its small N-terminal domain has been crystallized. The RadA hexamers further assemble into two-ringed assemblies. Similar assemblies can be observed in the crystals of Pyrococcus furiosus RadA and Homo sapiens DMC1. In all of these two-ringed assemblies the DNA-interacting L1 region of each protomer points inward towards the centre, creating a highly positively charged locus. The electrostatic characteristics of the central channels can be utilized in the design of novel recombinase inhibitors.
Collapse
Affiliation(s)
- Liqin Du
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Suite A3, Saskatoon, Sasktchewan S7N 5E5, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Suite A3, Saskatoon, Sasktchewan S7N 5E5, Canada
| |
Collapse
|
38
|
Peterson EJR, Janzen WP, Kireev D, Singleton SF. High-throughput screening for RecA inhibitors using a transcreener adenosine 5'-O-diphosphate assay. Assay Drug Dev Technol 2011; 10:260-8. [PMID: 22192312 DOI: 10.1089/adt.2011.0409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5'-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener(®) adenosine 5'-O-diphosphate [ADP](2) fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z'=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC(50) values ≤ 10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays.
Collapse
Affiliation(s)
- Eliza J R Peterson
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA
| | | | | | | |
Collapse
|
39
|
Thi TD, Lopez E, Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Guelfo JR, Castaneda-Garcia A, Blazquez J. Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 2011; 66:531-8. [DOI: 10.1093/jac/dkq496] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2010; 2:1005-35. [DOI: 10.4155/fmc.10.185] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.
Collapse
|
41
|
Sexton JZ, Wigle TJ, He Q, Hughes MA, Smith GR, Singleton SF, Williams AL, Yeh LA. Novel Inhibitors of E. coli RecA ATPase Activity. CURRENT CHEMICAL GENOMICS 2010; 4:34-42. [PMID: 20648224 PMCID: PMC2905775 DOI: 10.2174/1875397301004010034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/07/2009] [Accepted: 12/12/2009] [Indexed: 11/22/2022]
Abstract
The bacterial RecA protein has been implicated as a bacterial drug target not as an antimicrobial target, but as an adjuvant target with the potential to suppress the mechanism by which bacteria gain drug resistance. In order to identify small molecules that inhibit RecA/ssDNA nucleoprotein filament formation, we have adapted the phosphomolybdate-blue ATPase assay for high throughput screening to determine RecA ATPase activity against a library of 33,600 compounds, which is a selected representation of diverse structure of 350,000. Four distinct chemotypes were represented among the 40 validated hits. SAR and further chemical synthesis is underway to optimize this set of inhibitors to be used as antimicrobial adjuvant agents.
Collapse
Affiliation(s)
- Jonathan Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 2009; 12:482-9. [PMID: 19647477 PMCID: PMC2761529 DOI: 10.1016/j.mib.2009.06.018] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 12/21/2022]
Abstract
The alarming spread of bacterial strains exhibiting resistance to current antibiotic therapies necessitates that we elucidate the specific genetic and biochemical responses underlying drug-mediated cell killing, so as to increase the efficacy of available treatments and develop new antibacterials. Recent research aimed at identifying such cellular contributions has revealed that antibiotics induce changes in metabolism that promote the formation of reactive oxygen species, which play a role in cell death. Here we discuss the relationship between drug-induced oxidative stress, the SOS response and their potential combined contribution to resistance development. Additionally, we describe ways in which these responses are being taken advantage to combat bacterial infections and arrest the rise of resistant strains.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
43
|
Wigle TJ, Sexton JZ, Gromova AV, Hadimani MB, Hughes MA, Smith GR, Yeh LA, Singleton SF. Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. ACTA ACUST UNITED AC 2009; 14:1092-101. [PMID: 19675313 DOI: 10.1177/1087057109342126] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenomenon of antibiotic resistance has created a need for the development of novel antibiotic classes with nonclassical cellular targets. Unfortunately, target-based drug discovery against proteins considered essential for in vitro bacterial viability has yielded few new therapeutic classes of antibiotics. Targeting the large proportion of genes considered nonessential that have yet to be explored by high-throughput screening, for example, RecA, can complement these efforts. Recent evidence suggests that RecA-controlled processes are responsible for tolerance to antibiotic chemotherapy and are involved in pathways that ultimately lead to full-fledged antibiotic resistance. Therefore inhibitors of RecA may serve as therapeutic adjuvants in combination chemotherapy of bacterial infectious diseases. Toward the goal of validating RecA as a novel target in the chemotherapy of bacterial infections, the authors have screened 35,780 small molecules against RecA. In total, 80 small molecules were identified as primary hits and could be clustered in 6 distinct chemotype clades. The most potent class of hits was further examined, and 1 member compound was found to inhibit RecA-mediated strand exchange and prevent ciprofloxacin-induced SOS expression in Escherichia coli. This compound represents the first small molecule demonstrating an ability to inhibit the bacterial SOS response in live bacterial cell cultures.
Collapse
Affiliation(s)
- Tim J Wigle
- UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li Y, He Y, Luo Y. Crystal structure of an archaeal Rad51 homologue in complex with a metatungstate inhibitor. Biochemistry 2009; 48:6805-10. [PMID: 19555119 DOI: 10.1021/bi900832t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Archaeal RadAs are close homologues of eukaryal Rad51s ( approximately 40% sequence identities). These recombinases promote a hallmark strand exchange process between homologous single-stranded and double-stranded DNA substrates. This DNA-repairing function also plays a key role in cancer cells' resistance to chemo- and radiotherapy. Inhibition of the strand exchange process may render cancer cells more susceptible to therapeutic treatment. We found that metatungstate is a potent inhibitor of RadA from Methanococcus voltae. The tungsten cluster binds RadA in the axial DNA-binding groove. This polyanionic species appears to inhibit RadA by locking the protein in its inactive conformation.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry, University of Saskatchewan, A3 Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | |
Collapse
|
45
|
Abstract
Enzymes continue to be a major drug target class for the pharmaceutical industry with high-throughput screening the approach of choice for identifying initial active chemical compounds. The development of fluorescent- or absorbance-based readouts typically remains the formats of choice for enzyme screens and a wealth of experience from both industry and academia has led to a comprehensive set of standardized assay development and validation guidelines for enzyme assays. In this chapter, we generalize approaches to developing, validating, and troubleshooting assays that should be applicable in both industrial and academic settings. Real-life examples of various enzyme classes including kinases, proteases, transferases, and phosphatases are used to illustrate assay development approaches and solutions. Practical examples are given for how to deal with low-purity enzyme targets, compound interference, and identification of activators. Assay acceptance criteria and a number of assay notes on pitfalls to avoid should provide pointers on how to develop a suitable enzymatic assay applicable for HTS.
Collapse
Affiliation(s)
- Kevin P Williams
- Department of Pharmaceutical Sciences and BRITE, North Carolina Central University, Durham, NC, USA
| | | |
Collapse
|
46
|
Raman K, Chandra N. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 2008; 8:234. [PMID: 19105810 PMCID: PMC2649132 DOI: 10.1186/1471-2180-8-234] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/23/2008] [Indexed: 11/11/2022] Open
Abstract
Background Emergence of drug resistant varieties of tuberculosis is posing a major threat to global tuberculosis eradication programmes. Although several approaches have been explored to counter resistance, there has been limited success due to a lack of understanding of how resistance emerges in bacteria upon drug treatment. A systems level analysis of the proteins involved is essential to gain insights into the routes required for emergence of drug resistance. Results We derive a genome-scale protein-protein interaction network for Mycobacterium tuberculosis H37Rv from the STRING database, with proteins as nodes and interactions as edges. A set of proteins involved in both intrinsic and extrinsic drug resistance mechanisms are identified from literature. We then compute shortest paths from different drug targets to the set of resistance proteins in the protein-protein interactome, to derive a sub-network relevant to study emergence of drug resistance. The shortest paths are then scored and ranked based on a new scheme that considers (a) drug-induced gene upregulation data, from microarray experiments reported in literature, for the individual nodes and (b) edge-hubness, a network parameter which signifies centrality of a given edge in the network. High-scoring paths identified from this analysis indicate most plausible pathways for the emergence of drug resistance. Different targets appear to have different propensities for four drug resistance mechanisms. A new concept of 'co-targets' has been proposed to counter drug resistance, co-targets being defined as protein(s) that need to be simultaneously inhibited along with the intended target(s), to check emergence of resistance to a given drug. Conclusion The study leads to the identification of possible pathways for drug resistance, providing novel insights into the problem of resistance. Knowledge of important proteins in such pathways enables identification of appropriate 'co-targets', best examples being RecA, Rv0823c, Rv0892 and DnaE1, for drugs targeting the mycolic acid pathway. Insights obtained about the propensity of a drug to trigger resistance will be useful both for more careful identification of drug targets as well as to identify target-co-target pairs, both implementable in early stages of drug discovery itself. This approach is also inherently generic, likely to significantly impact drug discovery.
Collapse
Affiliation(s)
- Karthik Raman
- Bioinformatics Centre, Supercomputer Education and Research Centre Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
47
|
Cline DJ, Holt SL, Singleton SF. Inhibition of Escherichia coli RecA by rationally redesigned N-terminal helix. Org Biomol Chem 2007; 5:1525-8. [PMID: 17571180 DOI: 10.1039/b703159a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacterial RecA promotes the development and transmission of antibiotic resistance genes by self-assembling into an ATP-hydrolyzing filamentous homopolymer on single-stranded DNA. We report the design of a 29mer peptide based on the RecA N-terminal domain involved in intermonomer contact that inhibits RecA filament assembly with an IC50 of 3 microM.
Collapse
Affiliation(s)
- Daniel J Cline
- School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|