1
|
Li X, Cheng Y, Li Y, Sun F, Zhan X, Yang Z, Yang J, Du Y. DMSO/SOCl 2-Enabled Synthesis of 3-Chloroindoles via Desulfonylative Chlorocyclization of N,N-Disubstituted 2-Alkynylanilines. J Org Chem 2024; 89:2039-2049. [PMID: 38241277 DOI: 10.1021/acs.joc.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The application of the DMSO/SOCl2 system enabled the intramolecular cyclization/chlorination of N,N-disubstituted 2-alkynylanilines, leading to the synthesis of a series of 3-chloroindoles with moderate to good yields. Differing from the previously reported interrupted Pummerer reaction featuring the introduction of SMe moiety, the current approach adopted an alternative pathway that realized the incorporation of chlorine atom to the indole skeleton via a desulfonylative chlorocyclization process.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiangyu Zhan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Galvelis R, Varela-Rial A, Doerr S, Fino R, Eastman P, Markland TE, Chodera JD, De Fabritiis G. NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics. J Chem Inf Model 2023; 63:5701-5708. [PMID: 37694852 PMCID: PMC10577237 DOI: 10.1021/acs.jcim.3c00773] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM). This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation speed by ∼5 times and achieve a combined sampling of 1 μs for each complex, marking the longest simulations ever reported for this class of simulations.
Collapse
Affiliation(s)
- Raimondas Galvelis
- Acellera Labs, C/Doctor Trueta 183, Barcelona 08005, Spain
- Computational Science Laboratory, Universitat Pompeu Fabra, PRBB, C/Doctor Aiguader 88, Barcelona 08003, Spain
| | - Alejandro Varela-Rial
- Acellera Ltd, Devonshire House 582 Honeypot Lane, Stanmore Middlesex, HA7 1JS, United Kingdom
| | - Stefan Doerr
- Acellera Ltd, Devonshire House 582 Honeypot Lane, Stanmore Middlesex, HA7 1JS, United Kingdom
| | - Roberto Fino
- Acellera Labs, C/Doctor Trueta 183, Barcelona 08005, Spain
| | - Peter Eastman
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Gianni De Fabritiis
- Computational Science Laboratory, Universitat Pompeu Fabra, PRBB, C/Doctor Aiguader 88, Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
- Acellera Ltd, Devonshire House 582 Honeypot Lane, Stanmore Middlesex, HA7 1JS, United Kingdom
| |
Collapse
|
3
|
Yamamoto Y, Yaji K, Ito T. Practical Isolation of tert-Butyl [(1 S,2 R)-2-Aminocyclohexyl]carbamate ( R)-Mandelate through Diastereomeric Salt Formation under Thermodynamic Control. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhei Yamamoto
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Kentaro Yaji
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Tatsuya Ito
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| |
Collapse
|
4
|
Stepannikova KO, Vashchenko BV, Grygorenko OO, Gorichko MV, Cherepakha AY, Moroz YS, Volovenko YM, Zhersh S. Synthesis of Spirocyclic β- and γ-Sultams by One-Pot Reductive Cyclization of Cyanoalkylsulfonyl Fluorides. European J Org Chem 2020; 2021:6530-6540. [DOI: 10.1002/ejoc.202000351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Bohdan V. Vashchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Marian V. Gorichko
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Yurii S. Moroz
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
- Chemspace; Ilukstes iela 38-5 1082 Riga Latvia
| | - Yulian M. Volovenko
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Serhii Zhersh
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
5
|
Hao X, Zuo X, Kang D, Zhang J, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors. Expert Opin Drug Discov 2019; 14:915-931. [DOI: 10.1080/17460441.2019.1626821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| |
Collapse
|
6
|
Ilin I, Lipets E, Sulimov A, Kutov D, Shikhaliev K, Potapov A, Krysin M, Zubkov F, Sapronova L, Ataullakhanov F, Sulimov V. New factor Xa inhibitors based on 1,2,3,4-tetrahydroquinoline developed by molecular modelling. J Mol Graph Model 2019; 89:215-224. [PMID: 30913501 DOI: 10.1016/j.jmgm.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Factor Xa is a serine protease representing a crucial element in the coagulation process and an attractive target for anticoagulant therapy. At the present time there are several chemical classes of factor Xa inhibitors with proven activity. Furthermore, three factor Xa inhibitors have been approved for the medical use to date. However, therapy with these medications is accompanied by substantial adverse effects. In this background, the structure-based computational approach combining molecular docking and semiempirical quantum chemical calculations was applied for a search for new effective factor Xa inhibitors. We have undertaken a few virtual screening procedures to select potential candidates for synthesis and subsequent testing. The first screen of the focused library resulted in identifying 20 compounds among which 7 compounds showed the noticeable inhibition of factor Xa at maximal concentrations, allowed by solubility. The subsequent additional screens identified 20 additional candidates. Of these, 5 substances were shown to be capable of inhibiting factor Xa at 5 μM. The best two found 1,2,3,4-tetrahydroquinoline derivatives identified by means of modelling have demonstrated IC50 values in the micromolar range. One of them turned out to be selective factor Xa inhibitor over trypsin, factors IIa, IXa and XIa.
Collapse
Affiliation(s)
- Ivan Ilin
- Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, Moscow, 119992, Russia; Dimonta, Ltd, Nagornaya Street 15, Building 8, Moscow, 17186, Russia.
| | - Elena Lipets
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela Str., Moscow, 117997, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences Kosygina Str. 4, Moscow, 119334, Russia
| | - Alexey Sulimov
- Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, Moscow, 119992, Russia; Dimonta, Ltd, Nagornaya Street 15, Building 8, Moscow, 17186, Russia
| | - Danil Kutov
- Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, Moscow, 119992, Russia; Dimonta, Ltd, Nagornaya Street 15, Building 8, Moscow, 17186, Russia
| | - Khidmet Shikhaliev
- Voronezh State University, Universitetskaya Sq. 1, Voronezh, 394018, Russia
| | - Andrey Potapov
- Voronezh State University, Universitetskaya Sq. 1, Voronezh, 394018, Russia
| | - Michael Krysin
- Voronezh State University, Universitetskaya Sq. 1, Voronezh, 394018, Russia
| | - Fedor Zubkov
- Department of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, Russia
| | - Lyudmila Sapronova
- Department of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, Russia
| | - Fazoyl Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela Str., Moscow, 117997, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences Kosygina Str. 4, Moscow, 119334, Russia
| | - Vladimir Sulimov
- Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, Moscow, 119992, Russia; Dimonta, Ltd, Nagornaya Street 15, Building 8, Moscow, 17186, Russia
| |
Collapse
|
7
|
Design and synthesis of novel 3,4-diaminobenzoyl derivatives as antithrombotic agents with improved solubility. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Kumar KA, Kannaboina P, Jaladanki CK, Bharatam PV, Das P. Copper-CatalyzedN-Arylation of Tautomerizable Heterocycles with Boronic Acids and Its Application to Synthesis of Oxygenated Carbazoles. ChemistrySelect 2016. [DOI: 10.1002/slct.201600147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Karampoori Anil Kumar
- Academy of Scientific and Innovative Research (AcSIR); Jammu-Campus; Canal Road Jammu- 180001 India
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu- 180001 India
| | - Prakash Kannaboina
- Academy of Scientific and Innovative Research (AcSIR); Jammu-Campus; Canal Road Jammu- 180001 India
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu- 180001 India
| | - Chaitanya K. Jaladanki
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; S.A.S. Nagar - 160 062 Punjab India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; S.A.S. Nagar - 160 062 Punjab India
| | - Parthasarathi Das
- Academy of Scientific and Innovative Research (AcSIR); Jammu-Campus; Canal Road Jammu- 180001 India
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu- 180001 India
| |
Collapse
|
9
|
Yang J, Su G, Ren Y, Chen Y. Synthesis of 3,4-diaminobenzoyl derivatives as factor Xa inhibitors. Eur J Med Chem 2015; 101:41-51. [PMID: 26114810 DOI: 10.1016/j.ejmech.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 02/05/2023]
Abstract
The coagulation factor Xa (FXa) plays a central role in the blood coagulation cascade. Recent studies have shown that FXa is a particularly attractive target for the development of oral antithrombotic agents. In view of the excellent pharmaceutical properties of 1,2-phenylenediamine-based FXa inhibitors and the reported structure-activity relationship (SAR) analysis of FXa inhibitors, we designed and synthesized a series of 3,4-diaminobenzoyl-based FXa inhibitors. Intensive SAR studies on this new series led to the discovery of 3,4-dimethoxyl substituted compound 7b. 7b is a highly potent, selective, direct FXa inhibitor with excellent in vivo antithrombotic activity.
Collapse
Affiliation(s)
- Jiabin Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Guoqiang Su
- Nanjing Zhongrui Pharmaceutical Co., Ltd., Nanjing, Jiangsu 211100, PR China
| | - Yu Ren
- Nanjing Zhongrui Pharmaceutical Co., Ltd., Nanjing, Jiangsu 211100, PR China
| | - Yang Chen
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|
10
|
Design, synthesis and structure-activity relationship of oxazolidinone derivatives containing novel S4 ligand as FXa inhibitors. Eur J Med Chem 2015; 96:369-80. [PMID: 25911624 DOI: 10.1016/j.ejmech.2015.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022]
Abstract
A novel series of potent and efficacious factor Xa inhibitors which possesses pyrrole/indole/thiazole moieties as S4 binding element was identified. Compound 7b showed strong human factor Xa inhibitory activity (IC50 = 2.01 nM) and anticoagulant activities in both human (PTCT2 = 0.15 μM, APPTCT2 = 0.30 μM) and rabbit plasma (PTCT2 = 0.46 μM, APPTCT2 = 0.75 μM). The SARs analyses indicated that the size and water solubility of different alkylamino group at the position of S4 ligand were responsible for the anticoagulant activity.
Collapse
|
11
|
Yan J, Ni T, Yan F. Simple and efficient procedures for selective preparation of 3-haloindoles and 2,3-dihaloindoles by using 1,3-dibromo-5,5-dimethylhydantoin and 1,3-dichloro-5,5-dimethylhydantoin. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pendem N, Douat C, Claudon P, Laguerre M, Castano S, Desbat B, Cavagnat D, Ennifar E, Kauffmann B, Guichard G. Helix-Forming Propensity of Aliphatic Urea Oligomers Incorporating Noncanonical Residue Substitution Patterns. J Am Chem Soc 2013; 135:4884-92. [DOI: 10.1021/ja401151v] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nagendar Pendem
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Céline Douat
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Paul Claudon
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Michel Laguerre
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Sabine Castano
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Bernard Desbat
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Dominique Cavagnat
- ISM, UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération,
33405 Talence, France
| | - Eric Ennifar
- Université de Strasbourg-CNRS UPR 9002, Architecture et Réactivité
de l’ARN, IBMC, CNRS, 15 rue René Descartes, 67084 Strasbourg,
France
| | - Brice Kauffmann
- Université de Bordeaux-CNRS UMS 3033, INSERM US001, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Gilles Guichard
- Université de Bordeaux-CNRS UMR 5248, CBMN, Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
13
|
Olson DE, Roberts DA, Du Bois J. Synthesis of differentially substituted 1,2-diamines through advances in C-H amination technology. Org Lett 2012; 14:6174-7. [PMID: 23227976 DOI: 10.1021/ol302895f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A general, high yielding method for the synthesis of 1,2-diamine derivatives is described that capitalizes on selective, rhodium-catalyzed C-H insertion of hydroxylamine-based sulfamate esters. The resulting Troc-protected oxathiadiazinane heterocycles are easily modified and can be reduced under the mild action of NaI to afford differentially substituted diamine products. This technology offers a number of salient improvements over related C-H and π-bond amination tactics for diamine synthesis.
Collapse
Affiliation(s)
- David E Olson
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | |
Collapse
|
14
|
Synthesis and structure–activity relationship of potent, selective and orally active anthranilamide-based factor Xa inhibitors: Application of weakly basic sulfoximine group as novel S4 binding element. Eur J Med Chem 2012; 58:136-52. [DOI: 10.1016/j.ejmech.2012.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
|
15
|
Liang G, Choi-Sledeski YM, Chen X, Gong Y, MacMillan EW, Tsay J, Sides K, Cairns J, Kulitzscher B, Aldous DJ, Morize I, Pauls HW. Dimerization of β-tryptase inhibitors, does it work for both basic and neutral P1 groups? Bioorg Med Chem Lett 2012; 22:3370-6. [PMID: 22483389 DOI: 10.1016/j.bmcl.2012.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/16/2022]
Abstract
The tetrameric folding of β-tryptase and the pair-wise distribution of its substrate binding sites offer a unique opportunity for development of inhibitors that span two adjacent binding sites. A series of dimeric inhibitors with two basic P1 moieties was discovered using this design strategy and exhibited tight-binder characteristics. Using the same strategy, an attempt was made to design and synthesize dimeric inhibitors with two neutral-P1 groups in hope to exploit the dimeric binding mode to achieve a starting point for further optimization. The unsuccessful attempt, however, demonstrated the important role played by Ala190 in neutral-P1 binding and casted further doubt on the possibility of developing neutral-P1 inhibitors for β-tryptase.
Collapse
Affiliation(s)
- Guyan Liang
- Molecular Innovative Therapeutics, Sanofi Pharmaceuticals, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Salonen LM, Holland MC, Kaib PSJ, Haap W, Benz J, Mary JL, Kuster O, Schweizer WB, Banner DW, Diederich F. Molecular recognition at the active site of factor Xa: cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water. Chemistry 2011; 18:213-22. [PMID: 22162109 DOI: 10.1002/chem.201102571] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Indexed: 11/10/2022]
Abstract
Factor Xa, a serine protease from the blood coagulation cascade, is an ideal enzyme for molecular recognition studies, as its active site is highly shape-persistent and features distinct, concave sub-pockets. We developed a family of non-peptidic, small-molecule inhibitors with a central tricyclic core orienting a neutral heterocyclic substituent into the S1 pocket and a quaternary ammonium ion into the aromatic box in the S4 pocket. The substituents were systematically varied to investigate cation-π interactions in the S4 pocket, optimal heterocyclic stacking on the flat peptide walls lining the S1 pocket, and potential water replacements in both the S1 and the S4 pockets. Structure-activity relationships were established to reveal and quantify contributions to the binding free enthalpy, resulting from single-atom replacements or positional changes in the ligands. A series of high-affinity ligands with inhibitory constants down to K(i)=2 nM were obtained and their proposed binding geometries confirmed by X-ray co-crystal structures of protein-ligand complexes.
Collapse
Affiliation(s)
- Laura M Salonen
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, HCI, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Smith RD, Dunbar JB, Ung PMU, Esposito EX, Yang CY, Wang S, Carlson HA. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 2011; 51:2115-31. [PMID: 21809884 PMCID: PMC3186041 DOI: 10.1021/ci200269q] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
As part of the Community Structure-Activity Resource (CSAR) center, a set of 343 high-quality, protein–ligand crystal structures were assembled with experimentally determined Kd or Ki information from the literature. We encouraged the community to score the crystallographic poses of the complexes by any method of their choice. The goal of the exercise was to (1) evaluate the current ability of the field to predict activity from structure and (2) investigate the properties of the complexes and methods that appear to hinder scoring. A total of 19 different methods were submitted with numerous parameter variations for a total of 64 sets of scores from 16 participating groups. Linear regression and nonparametric tests were used to correlate scores to the experimental values. Correlation to experiment for the various methods ranged R2 = 0.58–0.12, Spearman ρ = 0.74–0.37, Kendall τ = 0.55–0.25, and median unsigned error = 1.00–1.68 pKd units. All types of scoring functions—force field based, knowledge based, and empirical—had examples with high and low correlation, showing no bias/advantage for any particular approach. The data across all the participants were combined to identify 63 complexes that were poorly scored across the majority of the scoring methods and 123 complexes that were scored well across the majority. The two sets were compared using a Wilcoxon rank-sum test to assess any significant difference in the distributions of >400 physicochemical properties of the ligands and the proteins. Poorly scored complexes were found to have ligands that were the same size as those in well-scored complexes, but hydrogen bonding and torsional strain were significantly different. These comparisons point to a need for CSAR to develop data sets of congeneric series with a range of hydrogen-bonding and hydrophobic characteristics and a range of rotatable bonds.
Collapse
Affiliation(s)
- Richard D Smith
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Mochizuki A, Nagata T, Kanno H, Suzuki M, Ohta T. 2-Aminomethylphenylamine as a novel scaffold for factor Xa inhibitor. Bioorg Med Chem 2011; 19:1623-42. [DOI: 10.1016/j.bmc.2011.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
19
|
Lee YK, Player MR. Developments in factor Xa inhibitors for the treatment of thromboembolic disorders. Med Res Rev 2011; 31:202-83. [DOI: 10.1002/med.20183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Facile synthesis of 2-bromoindoles by ligand-free CuI-catalyzed intramolecular cross-coupling of gem-dibromoolefins. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Anselm L, Banner DW, Benz J, Zbinden KG, Himber J, Hilpert H, Huber W, Kuhn B, Mary JL, Otteneder MB, Panday N, Ricklin F, Stahl M, Thomi S, Haap W. Discovery of a factor Xa inhibitor (3R,4R)-1-(2,2-difluoro-ethyl)-pyrrolidine-3,4-dicarboxylic acid 3-[(5-chloro-pyridin-2-yl)-amide] 4-[[2-fluoro-4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amide] as a clinical candidate. Bioorg Med Chem Lett 2010; 20:5313-9. [PMID: 20650636 DOI: 10.1016/j.bmcl.2010.06.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
A series of (3R,4R)-pyrrolidine-3,4-dicarboxylic acid amides was investigated with respect to their factor Xa inhibitory activity, selectivity, pharmacokinetic properties, and ex vivo antithrombotic activity. The clinical candidate from this series, R1663, exhibits excellent selectivity against a panel of serine proteases and good pharmacokinetic properties in rats and monkeys. A Phase I clinical study with R1663 has been finalized.
Collapse
Affiliation(s)
- Lilli Anselm
- F. Hoffmann-La Roche Ltd, Pharma Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pinto DJP, Smallheer JM, Cheney DL, Knabb RM, Wexler RR. Factor Xa Inhibitors: Next-Generation Antithrombotic Agents. J Med Chem 2010; 53:6243-74. [PMID: 20503967 DOI: 10.1021/jm100146h] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Donald J. P. Pinto
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey, 08543
| | - Joanne M. Smallheer
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey, 08543
| | - Daniel L. Cheney
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey, 08543
| | - Robert M. Knabb
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey, 08543
| | - Ruth R. Wexler
- Research and Development, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey, 08543
| |
Collapse
|
23
|
de Candia M, Lopopolo G, Altomare C. Novel factor Xa inhibitors: a patent review. Expert Opin Ther Pat 2010; 19:1535-80. [PMID: 19743898 DOI: 10.1517/13543770903270532] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD New oral anticoagulants with favorable safety profiles and fixed doses are required for the management of thromboembolism and stroke prevention in patients with atrial fibrillation. Among them, fXa inhibitors (the so-called xabans) are attractive options that can overcome limitations (e.g., bleeding) of the current oral antithrombotic therapy. The rational design of small-molecule direct fXa inhibitors, whose importance is testified by the growing number of publications and patents recently registered, has been fully supported by the X-ray crystallography of enzyme-ligand complexes. AREAS COVERED IN THIS REVIEW Pubmed, SciFinder Scholar, ISI web of knowledge(SM), http://ep.espacenet.com/ and Google websites were used as the main sources for literature retrieving, and > 100 patents filed between 2006 and April 2009, reviewed and discussed herein, highlight the variety among the P1 and P4 moieties on suitable scaffolds. WHAT THE READER WILL GAIN The replacement of the benzamidine P1 moiety, which characterizes the first generation, with less basic bioisosteric or nonpolar neutral P1 groups led to the disclosure of numerous fXa inhibitors with high potency, selectivity and oral bioavailability. Novel selective fXa inhibitors with stable pharmacokinetics, better therapeutic windows and ease-of-use than the existing anticoagulants are currently under advanced stage clinical trials. TAKE-HOME MESSAGE Available data from Phase II and Phase III studies reflect the drive towards fXa inhibitors as potentially more effective and safer antithrombotic drugs. Their development is expected to address two major needs for anticoagulation, namely safety and ease-of-use, and to significantly affect the anticoagulant market.
Collapse
Affiliation(s)
- Modesto de Candia
- University of Bari, Dipartimento Farmaco-Chimico, Via E. Orabona 4, I-70125 Bari, Italy
| | | | | |
Collapse
|
24
|
Shi Y, Sitkoff D, Zhang J, Klei HE, Kish K, Liu ECK, Hartl KS, Seiler SM, Chang M, Huang C, Youssef S, Steinbacher TE, Schumacher WA, Grazier N, Pudzianowski A, Apedo A, Discenza L, Yanchunas J, Stein PD, Atwal KS. Design, structure-activity relationships, X-ray crystal structure, and energetic contributions of a critical P1 pharmacophore: 3-chloroindole-7-yl-based factor Xa inhibitors. J Med Chem 2009; 51:7541-51. [PMID: 18998662 DOI: 10.1021/jm800855x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An indole-based P1 moiety was incorporated into a previously established factor Xa inhibitor series. The indole group was designed to hydrogen-bond with the carbonyl of Gly218, while its 3-methyl or 3-chloro substituent was intended to interact with Tyr228. These interactions were subsequently observed in the X-ray crystal structure of compound 18. SAR studies led to the identification of compound 20 as the most potent FXa inhibitor in this series (IC(50) = 2.4 nM, EC(2xPT) = 1.2 microM). An in-depth energetic analysis suggests that the increased binding energy of 3-chloroindole-versus 3-methylindole-containing compounds in this series is due primarily to (a) the more hydrophobic nature of chloro- versus methyl-containing compounds and (b) an increased interaction of 3-chloroindole versus 3-methylindole with Gly218 backbone. The stronger hydrophobicity of chloro- versus methyl-substituted aromatics may partly explain the general preference for chloro- versus methyl-substituted P1 groups in FXa, which extends beyond the current series.
Collapse
Affiliation(s)
- Yan Shi
- Bristol-Myers Squibb Research & Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mochizuki A, Nakamoto Y, Naito H, Uoto K, Ohta T. Design, synthesis, and biological activity of piperidine diamine derivatives as factor Xa inhibitor. Bioorg Med Chem Lett 2008; 18:782-7. [DOI: 10.1016/j.bmcl.2007.11.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/22/2007] [Accepted: 11/12/2007] [Indexed: 11/25/2022]
|