1
|
Lin XL, Hu QL, Tan KX, Chen XJ, Yang GP, Wei YG. Two Mn(II)-Bridged Silverton-Type [UMo 12O 42] 8- Polyoxometalates with Catalytic Activity for the Synthesis of Pyrazoles. Inorg Chem 2024; 63:12469-12474. [PMID: 38912662 DOI: 10.1021/acs.inorgchem.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Two Mn(II)-bridged Silverton-type {UMo12O42}-based polyoxomolybdates with different three-dimensional structures, Na6(H2O)12[Mn(UMo12O42)] (NaMn) and (NH4)2[K2Na6(μ4-O)2(H2O)1.2Mn(UMo12O42)]·4.6H2O (KMn), were hydrothermally synthesized and further characterized, demonstrating a feasible strategy for the assembly of Silverton-type polyoxomolybdates. Additionally, NaMn is demonstrated to be a good heterogeneous catalyst in the condensation cyclization reaction of hydrazines and 1,3-diketones, and a range of valuable pyrazoles were produced in up to 99% yield.
Collapse
Affiliation(s)
- Xiao-Ling Lin
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Qi-Long Hu
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Ke-Xin Tan
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xue-Jiao Chen
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Guo-Ping Yang
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong-Ge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Ma XQ, Liu YF, Yang GP, Kong XJ, Li XX, Zheng ST. An Unusual Crystalline Porous Framework Constructed from Multitypes of Cages with Proton Conduction Property and Heterogeneous Catalytic Activity for Pyrazole Synthesis. Inorg Chem 2024; 63:12240-12247. [PMID: 38946338 DOI: 10.1021/acs.inorgchem.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.
Collapse
Affiliation(s)
- Xiao-Qi Ma
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yu-Feng Liu
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Guo-Ping Yang
- School of Chemistry and Material Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
3
|
Bononi G, Lonzi C, Tuccinardi T, Minutolo F, Granchi C. The Benzoylpiperidine Fragment as a Privileged Structure in Medicinal Chemistry: A Comprehensive Review. Molecules 2024; 29:1930. [PMID: 38731421 PMCID: PMC11085656 DOI: 10.3390/molecules29091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.
Collapse
Affiliation(s)
| | | | | | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.B.); (C.L.); (T.T.); (F.M.)
| |
Collapse
|
4
|
Hao L, Wang Z, Wang Y, Yang Z, Liu X, Xu X, Ji Y. Synthesis of pyrazoles from sulfonyl hydrazone and benzyl acrylate under transition-metal-free conditions. Org Biomol Chem 2023; 21:7611-7615. [PMID: 37681741 DOI: 10.1039/d3ob01172k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Pyrazoles as an important class of heterocyclic compounds, are widely found in pharmaceuticals and bioactive natural products. Herein we report a [3 + 2] cycloaddition reaction for the synthesis of a series of pyrazoles, with the yield up to 77%. This approach exhibits many notable features, such as convenient operating conditions, excellent functional group compatibility and readily accessible raw materials, providing an alternative route for the construction of pyrazole derivatives.
Collapse
Affiliation(s)
- Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhichao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhaoziyuan Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaobo Xu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Liu Q, Liu X, Li Y, Zhou Y, Zhao L, Liang X, Liu H. Construction of Diversified Penta-Spiro-Heterocyclic and Fused-Heterocyclic Frameworks with Potent Antitumor Activity. Chemistry 2023; 29:e202301553. [PMID: 37370192 DOI: 10.1002/chem.202301553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Multiple-spiro/fused-heterocyclic frameworks containing indazolone are structurally unique and represent a class of potentially dominant skeletons. In this work, we successfully fulfilled Rh(III)-catalyst mediated substrate- and pH- controlled strategies to construct four novel types of complicated penta-spiro/fused-heterocyclic frameworks via C-H activation/[4+1] and [4+2] annulation cascades. This method had mild reaction conditions, a broad scope of substrates, moderate to good yields, and valuable applications, which could realize for the first time the generation of the novel di-spiro-heterocyclic and multiple fused-heterocyclic products with unique structures. More importantly, novel spiro[cyclohexane-indazolo[1,2-a]indazole] scaffold constructed by this method exhibited potent antitumor activity against a variety of refractory solid tumors and hematological malignancies in vitro. Overall, our work provided new insights into the construction of complex and diverse multiple spiro/fused-heterocyclic systems and offered novel valuable lead compounds for the discovery of antitumor drugs.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yazhou Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
6
|
Synthesis of novel isoxazole-containing pyrazolines and pyrazoles via cycloaddition and elimination/aromatization process. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Efficient synthesis of celecoxib and pyrazole derivatives on heterogeneous Ga-MCM-41-SO3H catalyst under mild condition. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Kamal R, Kumar A, Kumar R. Synthetic Strategies for 1,4,5/4,
5‐Substituted
Azoles: A Perspective Review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raj Kamal
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | | | - Ravinder Kumar
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
- Department of Chemistry Maharishi Markandeshavar (Deemed to be University), Mullana Ambala Haryana India
| |
Collapse
|
9
|
Zebbiche Z, Şekerci G, Boulebd H, Küçükbay F, Tekin S, Tekin Z, Küçükbay H, Sandal S, Boumoud B. Preparation, DFT calculations, docking studies, antioxidant, and anticancer properties of new pyrazole and pyridine derivatives. J Biochem Mol Toxicol 2022; 36:e23135. [PMID: 35670538 DOI: 10.1002/jbt.23135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 05/29/2022] [Indexed: 01/30/2023]
Abstract
Seven novel pyrazole derivatives (4a-g) and four novel starting compounds incorporating substituted pyridine moieties were synthesized successfully. Cell viability assay for the tested compounds was performed, and the inhibitory concentrationlogarithmic 50 (LogIC50 ) values of the compounds were calculated after a 24-h treatment. Four of the examined compounds (3d, 3g, 4f, and 4g) showed comparable cytotoxic activity against CaCo-2 compared to the standard drug docetaxel at 0.1 and 1 μM concentrations. Although the LogIC50 of docetaxel was -0.678 μM for CaCo-2 cells at 24 h, the LogIC50 values of compounds were -0.794, -0.567, -0.657, and -0.498 μM, respectively. Five of the compounds (2d, 2g, 3d, 3g, and 4e) showed comparable cytotoxic activity against MCF-7 at 0.1 μM concentration compared to docetaxel (p < 0.05). Docking studies revealed the compounds have a good affinity to the active site of the human topoisomerase II β enzyme. The antioxidant capacities of all compounds were determined using both 1,1-diphenyl-2-picrylhydrazyl and metal chelation methods. Although the compounds did not show significant antioxidant activity, relatively effective are compounds 3c, 3d, and 3g, which are hydrazine derivatives with approximately 50% antioxidant activity of standard antioxidants at concentrations of 62.5 and 125 μg/ml.
Collapse
Affiliation(s)
- Zineddine Zebbiche
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| | - Güldeniz Şekerci
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| | | | - Suat Tekin
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Zehra Tekin
- Basic Pharmaceutical Sciences Department, Faculty of Pharmacy, Adiyaman University
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Süleyman Sandal
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Boudjemaa Boumoud
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| |
Collapse
|
10
|
Yao MY, Liu YF, Li XX, Yang GP, Zheng ST. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem Commun (Camb) 2022; 58:5737-5740. [PMID: 35445228 DOI: 10.1039/d2cc01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 4p-4f cluster incorporated polyoxometalate (POM), namely, H18{[(H4pic)4Eu10Se13O28(H2O)12](α-GeW9O34)4·40H2O (1-Eu, H4pic = isonicotinic acid), has been first synthesized and characterized. 1-Eu features an interesting four-shell structure, representing the largest Se-4f cluster incorporated POM known to date. Besides, 1-Eu exhibits excellent Lewis acid-base catalytic activity and reusablity in catalyzing the gram-scale dehydration condensation reaction of hydrazines and 1,3-diketones to synthesize polysubstituted pyrazoles.
Collapse
Affiliation(s)
- Meng-Ying Yao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
11
|
Thakur A, Verma M, Bharti R, Sharma R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Gutierrez DA, Contreras L, Villanueva PJ, Borrego EA, Morán-Santibañez K, Hess JD, DeJesus R, Larragoity M, Betancourt AP, Mohl JE, Robles-Escajeda E, Begum K, Roy S, Kirken RA, Varela-Ramirez A, Aguilera RJ. Identification of a Potent Cytotoxic Pyrazole with Anti-Breast Cancer Activity That Alters Multiple Pathways. Cells 2022; 11:254. [PMID: 35053370 PMCID: PMC8773755 DOI: 10.3390/cells11020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.
Collapse
Affiliation(s)
- Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Lisett Contreras
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Paulina J. Villanueva
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Edgar A. Borrego
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Karla Morán-Santibañez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Rebecca DeJesus
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Manuel Larragoity
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Ana P. Betancourt
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jonathon E. Mohl
- Department of Bioinformatics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA;
| | - Elisa Robles-Escajeda
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Khodeza Begum
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Sourav Roy
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Robert A. Kirken
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Armando Varela-Ramirez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| |
Collapse
|
13
|
Bamoniri A, Yaghmaeiyan N. Kaolin sulfonic acid nanoparticles: An efficient and reusable heterogeneous catalyst for the synthesis of highly substituted pyrazoles via a green protocol. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
14
|
Kaur BP, Sharma V, Sahoo SC, Chimni SS. Low catalyst loading enabled organocatalytic synthesis of chiral bis-heterocyclic frameworks containing pyrazole and isoxazole. Org Biomol Chem 2021; 19:9910-9924. [PMID: 34734954 DOI: 10.1039/d1ob01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The organocatalytic asymmetric synthesis of enantiopure bis-heterocyclic molecules containing pyrazole and isoxazole under mild reaction conditions has been reported via a low-catalyst loading Michael addition reaction of pyrazolyl nitroalkenes with 1,3-dicarbonyl derivatives. 4-Substituted pyrazole derivatives were obtained in 60-87% yields and with 82-97% ee. These pyrazolyl derivatives are further transformed into chiral bis-heterocyclic derivatives in up to 82% yields and up to 99% ee. The synthesized pyrazole and isoxazole based bis-heterocyclic derivatives are potential bio-active molecules expected to have significant applications. Additionally, the synthesis of these bis-heterocycles can efficiently be carried out in one pot without any loss of enantiopurity, which further adds to its significance.
Collapse
Affiliation(s)
- Banni Preet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India.
| | - Vivek Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India.
| | | | | |
Collapse
|
15
|
Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high‐efficiency catalysis for pyrazoles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Cao G, Zeng G, Li K, Liu Y, Lin X, Yang G. 2D network structure of zinc(II) complex: A new easily accessible and efficient catalyst for the synthesis of pyrazoles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang‐Ming Cao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| | - Guo‐Dong Zeng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| | - Ke Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| | - Yu‐Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| | - Xiao‐Ling Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| | - Guo‐Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
| |
Collapse
|
17
|
Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. ORGANICS 2021. [DOI: 10.3390/org2010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regiochemistry of [3+2] cycloaddition (32CA) processes between benzonitrile N-oxide 1 and β-phosphorylated analogues of nitroethenes 2a–c has been studied using the Density Functional Theory (DFT) at the M062X/6-31+G(d) theory level. The obtained results of reactivity indices show that benzonitrile N-oxide 1 can be classified both as a moderate electrophile and moderate nucleophile, while β-phosphorylated analogues of nitroethenes 2a–c can be classified as strong electrophiles and marginal nucleophiles. Moreover, the analysis of CDFT shows that for [3+2] cycloadditions with the participation of β-phosphorylatednitroethene 2a and β-phosphorylated α-cyanonitroethene 2b, the more favored reaction path forms 4-nitro-substituted Δ2-isoxazolines 3a–b, while for a reaction with β-phosphorylated β-cyanonitroethene 2c, the more favored path forms 5-nitro-substituted Δ2-isoxazoline 4c. This is due to the presence of a cyano group in the alkene. The CDFT study correlates well with the analysis of the kinetic description of the considered reaction channels. Moreover, DFT calculations have proven the clearly polar nature of all analyzed [3+2] cycloaddition reactions according to the polar one-step mechanism.
Collapse
|
18
|
Karmakar R, Mukhopadhyay C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. GREEN SYNTHETIC APPROACHES FOR BIOLOGICALLY RELEVANT HETEROCYCLES 2021:497-562. [DOI: 10.1016/b978-0-12-820586-0.00014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
de Araújo JS, França da Silva C, Batista DDGJ, Nefertiti A, Fiuza LFDA, Fonseca-Berzal CR, Bernardino da Silva P, Batista MM, Sijm M, Kalejaiye TD, de Koning HP, Maes L, Sterk GJ, Leurs R, Soeiro MDNC. Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrob Agents Chemother 2020; 64:e00414-20. [PMID: 32601163 PMCID: PMC7449165 DOI: 10.1128/aac.00414-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.
Collapse
Affiliation(s)
- Julianna Siciliano de Araújo
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Nefertiti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristina Rosa Fonseca-Berzal
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Bernardino da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maarten Sijm
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
20
|
Nagaraju B, Shanmukhakumar JV, Seelam N, Subbaiah T, Prasanna B. A Facile One-Pot Synthesis of 3-Methylbenzisoxazoles <i>via</i> a Key Intermediate of <i>ortho</i>-Ethoxyvinyl Nitroaryls by Domino Rearrangement and Their Anti- Inflammatory Activity. Curr Org Synth 2020; 16:1161-1165. [PMID: 31984922 DOI: 10.2174/1570179416666190925125450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently, there has been a lot of scientific interest in exploring the syntheses of oxygen and nitrogen-containing heterocyclic compounds due to their pharmacological activities. In addition, benzisoxazoles play a very important role in organic synthesis as key intermediates. OBJECTIVE In this paper, we focused on developing a novel synthetic route for biologically active arylisoxazoles under normal conditions, and simplified it to get high purities and yields, and also reported their anti-inflammatory activities. METHODS An efficient and simple method has been explored for the synthesis of novel 3-methyl arylisoxazoles from o-nitroaryl halides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via Domino rearrangement in one pot synthesis. RESULTS We synthesized novel 3-methylarylisoxazoles from o-nitroarylhalides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via domino rearrangement. In this reduction, nitro group and ethoxy vinyl group change to the functional acyl ketones, followed by hetero cyclization. Here, the reaction proceeds without the isolation of intermediates like 2-acylnitroarenes and 2- acylanilines. All the synthesized compounds were completely characterized by the NMR and mass spectra. The compounds were also explored for their anti-inflammatory activity by carrageenan-induced inflammation in the albino rats (150-200 g) of either sex used in this entire study with the use of Diclofenac sodium as the standard drug. The initial evaluations identified leading targets with good to moderate anti-inflammatory activity. CONCLUSION A simple, one-pot and convenient method has been explored for the synthesis of novel 3- methylarylisoxazoles with high purity and reaction yields. All the compounds 3a, 3c, 3d, 3f, 3g and 3h exhibited 51-64% anti-inflammatory activities.
Collapse
Affiliation(s)
- Bashetti Nagaraju
- Department of Chemistry, Chaitanya Postgraduate College (Autonomous), Kishanpura, Hanamkonda, Warangal, Telangana State-506001., India
| | - Jagarlapudi V Shanmukhakumar
- Research & Development, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur (A.P) 522502, India
| | - Nareshvarma Seelam
- Research & Development, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur (A.P) 522502, India
| | - Tondepu Subbaiah
- Research & Development, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur (A.P) 522502, India
| | - Bethanamudi Prasanna
- Department of Chemistry, Chaitanya Postgraduate College (Autonomous), Kishanpura, Hanamkonda, Warangal, Telangana State-506001, India
| |
Collapse
|
21
|
Saber AF, Zaki RM, Kamal El‐Dean AM, Radwan SM. Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno[2,3‐
c
]pyrazole‐5‐carboxamide. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ahmed F. Saber
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Remon M. Zaki
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | | | - Shaban M. Radwan
- Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| |
Collapse
|
22
|
|
23
|
Highly efficient synthesis of pyrazolylphosphonate derivatives in biocompatible deep eutectic solvent. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Regal MKA, Shaban SS, El‐Metwally SA. Facile Synthesis and Antimicrobial Activity of 5‐Amino‐3‐methyl‐1‐phenyl‐1
H
‐thieno[3,2‐
c
]pyrazole‐6‐carbonitrile and Their Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohsen K. A. Regal
- Chemistry Department, Science FacultyAin Shams University Cairo 11566 Egypt
| | - Safa S. Shaban
- Chemistry Department, Science FacultyAin Shams University Cairo 11566 Egypt
| | | |
Collapse
|
25
|
Abdel Reheim MAM, Baker SM. Synthesis, characterization and in vitro antimicrobial activity of novel fused pyrazolo[3,4-c]pyridazine, pyrazolo[3,4-d]pyrimidine, thieno[3,2-c]pyrazole and pyrazolo[3',4':4,5]thieno[2,3-d]pyrimidine derivatives. Chem Cent J 2017; 11:112. [PMID: 29098473 PMCID: PMC5668228 DOI: 10.1186/s13065-017-0339-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Some novel substituted pyrazolone, pyrazolo[3,4-c]pyridazine, pyrazolo[3,4-d]pyrimidine, pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidinone, thieno[3,2-c]pyrazole and pyrazolo[3′,4′:4,5]thieno[2,3-d]pyrimidine derivatives have been reported to possess various pharmacological activities like antimicrobial, antitumor and anti-inflammatory. Results A novel series of azoles and azines were designed and prepared via reaction of 1,3-diphenyl-1H-pyrazol-5(4H)-one with some electrophilic and nucleophilic reagents. The structures of target compounds were confirmed by elemental analyses and spectral data. Conclusions The antimicrobial activity of the target synthesized compounds were tested against various microorganisms such as Escherichia coli; Bacillus megaterium; Bacillus subtilis (Bacterial species), Fusarium proliferatum; Trichoderma harzianum; Aspergillus niger (fungal species) by the disc diffusion method. In general, the novel synthesized compounds showed a good antimicrobial activity against the previously mentioned microorganisms.
Collapse
Affiliation(s)
| | - Safaa M Baker
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| |
Collapse
|
26
|
The catalyst-free syntheses of pyrazolo[3,4-b]quinolin-5-one and pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5,7-dione derivatives by one-pot, three-component reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Banerjee B. Recent developments on ultrasound assisted catalyst-free organic synthesis. ULTRASONICS SONOCHEMISTRY 2017; 35:1-14. [PMID: 27771266 DOI: 10.1016/j.ultsonch.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 05/04/2023]
Abstract
Mother Nature needs to be protected from ever increasing chemical pollutions associated with synthetic organic processes. The fundamental challenge for today's methodologists is to make their protocols more environmentally benign and sustainable by avoiding the extensive use of hazardous reagents and solvents, harsh reaction conditions, and toxic metal catalysts. However, the people of the twenty-first century are well aware about the side effects of those hazardous substances used and generated by the chemical processes. As a result, the last decade has seen a tremendous outburst in modifying chemical processes to make them 'sustainable' for the betterment of our environment. Catalysts play a crucial role in organic synthesis and thus they find huge applications and uses. Scientists' continuously trying to modify the catalysts to reduce their toxicity level, but the most benign way is to design an organic reaction without catalyst(s), if possible. It is worthy to mention that the involvement of ultrasound in organic synthesis is sometimes fulfilling this goal. In many occasions the applications of ultrasound can avoid the use of catalysts in organic reactions. Such beneficial features as a whole have motivated the organic chemists to apply ultrasonic irradiation in more heights and as a results, in recent past, there were immense applications of ultrasound in organic reactions for the synthesis of diverse organic scaffolds under catalyst-free condition. The present review summarizes the latest developments on ultrasound assisted catalyst-free organic synthesis reported so far.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh 174301, India.
| |
Collapse
|
28
|
Banerjee B. Recent Developments on Ultrasound-Assisted Synthesis of Bioactive N-Heterocycles at Ambient Temperature. Aust J Chem 2017. [DOI: 10.1071/ch17080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
N-Heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. The last decade has seen a tremendous practice to carry out reactions at ambient temperature avoiding harsh reaction conditions. By applying ultrasonic radiation in organic synthesis we can make synthetic protocols more sustainable and can carry out reactions at room temperature avoiding the traditional thermal harsh reaction conditions. Therefore the synthesis of biologically relevant N-heterocycles at room temperature under the influence of ultrasonic irradiation is one of the advancing areas in the 21st century among organic chemists. The present review summarises the latest developments on ultrasound-assisted synthesis of biologically relevant N-heterocycles at ambient temperature.
Collapse
|
29
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
30
|
Morozova AD, Muravyova EA, Shishkina SV, Vashchenko EV, Sen'ko YV, Chebanov VA. Diversity-oriented Multicomponent Heterocyclizations Involving Derivatives of 3(5)-Aminoisoxazole, Aldehydes and Meldrum's or N,N′-Dimethylbarbituric Acid. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alisa D. Morozova
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
| | - Elena A. Muravyova
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
| | - Svitlana V. Shishkina
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
- Chemistry Faculty; Karazin Kharkiv National University; Svobody sq. 4 61022 Kharkiv Ukraine
| | - Elena V. Vashchenko
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
| | - Yulia V. Sen'ko
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
| | - Valentin A. Chebanov
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine; Nauky Ave. 60 61072 Kharkiv Ukraine
- Chemistry Faculty; Karazin Kharkiv National University; Svobody sq. 4 61022 Kharkiv Ukraine
| |
Collapse
|
31
|
Abd El-Aal HAK, Khalaf AA. Friedel–Crafts Chemistry. Part 46. Unprecedented Construction of Tricyclic Pyrazolo[3,4-b]quinolines, -[1,8]naphthyridines, -azepines, -azocines, -pyrido[3,2-g]azocines, and pyrazolo[3,4-b]azonines via Friedel–Crafts Ring Closures. Aust J Chem 2016. [DOI: 10.1071/ch15526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of keto-substituted pyrazolo[3,4-b]quinolines, pyrazolo[3,4-b][1,8]naphthyridines, benzo[e]pyrazolo[3,4-b]azepines, benzo[g]pyrazolo[3,4-b]azocines, pyrazolo[3,4-b]pyrido[3,2-g]azocines, and benzo[g]pyrazolo[3,4-b]azonines scaffolds were synthesized via a Friedel–Crafts cyclialkylation approach. The precursor acids were obtained by utilizing the modified Ullman coupling reactions of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid with different aryl amines followed by ring closures in the presence of AlCl3/CH3NO2 or P2O5 or polyphosphoric acid catalysts. Particular attention is given to the novel structures especially in regard to the promising pharmaceutical and therapeutic values associated with their skeletons.
Collapse
|
32
|
Emtiazi H, Amrollahi MA, Mirjalili BBF. Nano-silica sulfuric acid as an efficient catalyst for the synthesis of substituted pyrazoles. ARAB J CHEM 2015. [DOI: 10.1016/j.arabjc.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Zakerinasab B, Nasseri MA, Hassani H, Samieadel MM. Application of Fe3O4@SiO2@sulfamic acid magnetic nanoparticles as recyclable heterogeneous catalyst for the synthesis of imine and pyrazole derivatives in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2204-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Kang SR, Lee YR. Efficient one-pot protocol for diverse pyrazolylphosphonates by multi-component reactions: their antioxidant and antibacterial activities. Mol Divers 2015; 19:293-304. [PMID: 25652237 DOI: 10.1007/s11030-015-9568-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
Abstract
Efficient one-pot three-component reactions of pyrazolones with arylaldehydes and triethyl phosphite were carried out in the presence of ethylenediammonium diacetate as catalyst to synthesize biologically interesting pyrazolylphosphonate derivatives. This methodology offers several significant advantages such as environmentally benign character, the use of a mild catalyst, high yields, and ease of handling. The synthesized compounds were screened for their antioxidant and antibacterial activities. The result showed that compound 4d [Formula: see text] exhibited a strong free radical scavenger toward DPPH free radicals compared with standard BHT [Formula: see text]. In addition, compounds 4e and 4p showed potent antibacterial activities against Gram-negative bacteria of E. coli and compound 4o exhibited a potent activity against Gram-positive bacteria of S. aureus compared with standard Ampicillin.
Collapse
Affiliation(s)
- So Rang Kang
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | |
Collapse
|
35
|
From 4,5,6,7-tetrahydroindoles to 3- or 5-(4,5,6,7-tetrahydroindol-2-yl)isoxazoles in two steps: a regioselective switch between 3- and 5-isomers. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
|
37
|
Juneja H, Panchbhai D, Sheikh J, Ingle V, Hadda TB. Synthesis, antibacterial screening, and POM analyses of novel bis-isoxazolyl/pyrazolyl-1,3-diols. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0755-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Dandia A, Parewa V, Gupta SL, Rathore KS. Cobalt doped ZnS nanoparticles as a recyclable catalyst for solvent-free synthesis of heterocyclic privileged medicinal scaffolds under infrared irradiation. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
40
|
Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0944-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Gharib A, Jahangir M, Scheeren J(HW. Catalytic Synthesis of Pyrazoles and Diazepines Under Green Conditions at Room Temperature Using Heteropolyacids Catalysts. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2011.588369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
PEG–SO3H as a mild, efficient and green catalytic system for the synthesis of pyrazole derivatives in aqueous medium. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0143-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Zhao JT, Qi JJ, Zhou YJ, Lv JG, Zhu J. Ethyl 5-(4-amino-phen-yl)isoxazole-3-carboxyl-ate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o1111. [PMID: 22589968 PMCID: PMC3344059 DOI: 10.1107/s1600536812010653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/10/2012] [Indexed: 11/23/2022]
Abstract
The asymmetric unit of the title compound, C12H12N2O3, contains two molecules in which the benzene and isoxazole rings are almost coplanar, the dihedral angles between their mean planes being 1.76 (9) and 5.85 (8)°. The two molecules interact with each other via N—H⋯N and N—H⋯O hydrogen bonds, which link the molecules into layers parallel to the ac plane. The layers stack in a parallel mode with an interlayer distance of 3.36 (7) Å.
Collapse
Affiliation(s)
- Jun-Tao Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Bazgir A, Astaraki AM. Simple and Efficient Synthesis of 1,3-Dithioles with Pyrimidinylidene or Pyrazolylidene Substituents. PHOSPHORUS SULFUR 2011. [DOI: 10.1080/10426507.2010.551617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ayoob Bazgir
- a Department of Chemistry , Islamic Azad University , Doroud Branch, Doroud, Iran
| | | |
Collapse
|
46
|
Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev 2011; 111:6984-7034. [PMID: 21806021 DOI: 10.1021/cr2000459] [Citation(s) in RCA: 805] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, Spain.
| | | | | | | |
Collapse
|
47
|
Khaledi H, Ali HM, Thomas NF, Ng SW. Reactions of 2-(diformylmethylidene)-3,3-dimethylindole with hydrazides: Synthesis of new pyrazolylindolenine derivatives-the unprecedented one-pot pyrazole-thiadiazole double annulation. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Lu C, Jin F, Li C, Li W, Liu G, Tang Y. Insights into binding modes of 5-HT2c receptor antagonists with ligand-based and receptor-based methods. J Mol Model 2011; 17:2513-23. [PMID: 21203788 DOI: 10.1007/s00894-010-0936-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
5-hydroxytryptamine-2c (5-HT2c) receptor antagonists have clinical utility in the management of nervous system. In this work, ligand-based and receptor-based methods were used to investigate the binding mode of h5-HT2c receptor antagonists. First, the pharmacophore modeling of the h5-HT2c receptor antagonists was carried out by CATALYST. Then, the h5-HT2c antagonists were docked to the h5-HT2c receptor model. Subsequently, the comprehensive analysis of the pharmacophore and docking results revealed the structure-activity relationship of 5-HT2c receptor antagonists and the key residues involved in the interactions. For example, three hydrophobic points in the ligands corresponded to the region surrounded by Val135, Val208, Phe214, Ala222, Phe327, Phe328 and Val354 of the h5-HT2c receptor. The carbonyl group of compound 1 formed a hydrogen bond with Asn331. The nitrogen atom in the piperidine of compound 1 corresponding to the positive ionizable position of the best pharmacophore formed the electrostatic interactions with the carbonyl of Asp134, Asn331 and Val354, and with the hydroxyl group of Ser334. In addition, a predictive CoMFA model was developed based on the 24 compounds that were used as the training set in the pharmacophore modeling. Our results were not only useful to explore the detailed mechanism of the interactions between the h5-HT2c receptor and antagonists, but also provided suggestions in the discovery of novel 5-HT2c receptor antagonists.
Collapse
Affiliation(s)
- Chunhua Lu
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
49
|
Chans GM, Moyano EL, Yranzo GI. Novel Synthesis of 2-thienylcarbonyl-cyclohexane-1,3-dione as Building Block for Indazolones and Isoxazolones. Aust J Chem 2011. [DOI: 10.1071/ch11015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new synthetic methodology using ultrasonic treatment was applied to the C-acylation of 1,3-cyclohexanedione with thiophene-2-carbonyl chloride to afford 3-hydroxy-2-(2-thienylcarbonyl)cyclohex-2-en-1-one (5). This compound was used as a building block to prepare different bicyclic systems: tetrahydro-4H-indazol-4-ones (7a–c and 9a,b,d), and 6,7-dihydrobenzisoxazole (11) by reaction with different hydrazines and hydroxylamine, respectively. Structural elucidation of all compounds was thoroughly achieved by NMR spectroscopy.
Collapse
|
50
|
Barceló M, Raviña E, Varela MJ, Brea J, Loza MI, Masaguer CF. Potential atypical antipsychotics: synthesis, binding affinity and SAR of new heterocyclic bioisosteric butyrophenone analogues as multitarget ligands. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00202c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|