1
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
2
|
Kowalski K. A brief survey on the application of metal-catalyzed azide–alkyne cycloaddition reactions to the synthesis of ferrocenyl-x-1,2,3-triazolyl-R (x = none or a linker and R = organic entity) compounds with anticancer activity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Slavova KI, Todorov LT, Belskaya NP, Palafox MA, Kostova IP. Developments in the Application of 1,2,3-Triazoles in Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:92-112. [PMID: 32679022 DOI: 10.2174/1574892815666200717164457] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of cancer on modern society cannot be emphasized enough in terms of both economic and human costs. Cancer treatments are known, unfortunately, for their side effects - frequently numerous and severe. Drug resistance is another issue medical professionals have to tackle when dealing with neoplastic illnesses. Cancer rates are rising worldwide due to various factors - low-quality nutrition, air and water pollution, tobacco use, etc. For those and many other reasons, drug discovery in the field of oncology is a top priority in modern medical science. OBJECTIVE To present the reader with the latest in cancer drug discovery with regard to 1,2,3-triazole- containing molecules in a clear, concise way so as to make the present review a useful tool for researchers. METHODS Available information present on the role of 1,2,3-triazoles in cancer treatment was collected. Data was collected from scientific literature, as well as from patents. RESULTS A vast number of triazole-containing molecules with antiproliferative properties have been proposed, synthesized and tested for anticancer activity both in vitro and in vivo. The substances vary greatly when considering molecular structure, proposed mechanisms of action and affected cancer cell types. CONCLUSION Triazole-containing molecules with anticancer activity are being widely synthesized and extensively tested. They vary significantly in terms of both structure and mechanism of action. The methods for their preparation and administration are well established and with proven reproducibility. These facts suggest that triazoles may play an important role in the discovery of novel antiproliferative medications with improved effectiveness and safety profile.
Collapse
Affiliation(s)
- Katerina I Slavova
- Department of Chemistry, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Lozan T Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | | | - Mauricio A Palafox
- Departamento de Quimica-Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense, Madrid 28040, Spain
| | - Irena P Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Maji M, Acharya S, Bhattacharya I, Gupta A, Mukherjee A. Effect of an Imidazole-Containing Schiff Base of an Aromatic Sulfonamide on the Cytotoxic Efficacy of N,N-Coordinated Half-Sandwich Ruthenium(II) p-Cymene Complexes. Inorg Chem 2021; 60:4744-4754. [PMID: 33760599 DOI: 10.1021/acs.inorgchem.0c03706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
5
|
Anticancer Ruthenium Complexes with HDAC Isoform Selectivity. Molecules 2020; 25:molecules25102383. [PMID: 32455529 PMCID: PMC7287671 DOI: 10.3390/molecules25102383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes have emerged as an important class of molecular targets in cancer therapy, with five inhibitors in clinical use. Recently, it has been shown that a lack of selectivity between the 11 Zn-dependent HDAC isoforms may lead to unwanted side-effects. In this paper, we show that piano stool Ru complexes can act as HDAC inhibitors, and variation in the capping arene leads to differences in HDAC isoform selectivity.
Collapse
|
6
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yagnam S, Rami Reddy E, Trivedi R, Krishna NV, Giribabu L, Rathod B, Prakasham RS, Sridhar B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Swetha Yagnam
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Eda Rami Reddy
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Narra Vamshi Krishna
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balaji Rathod
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| |
Collapse
|
8
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
9
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
10
|
Zhao T, Grützke M, Götz KH, Druzhenko T, Huhn T. Synthesis and X-ray structure analysis of cytotoxic heptacoordinate sulfonamide salan titanium(IV)-bis-chelates. Dalton Trans 2016; 44:16475-85. [PMID: 26325575 DOI: 10.1039/c5dt01618e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel sulfonamide substituted heteroleptic salan titanium(IV)-bis-chelates complexed to 2,6-pyridinedicarboxylic acid were synthesized, structurally characterized and evaluated for their anticancer activity against two human carcinoma cell lines. All cytotoxic complexes showed complete inhibition of cell growth at active concentration, two complexes based on pyrrolidine and azepane substituted sulfonamides displayed IC50 values below 1.7 μM and are more cytotoxic than cisplatin in both tested cell lines. The azepane substituted complex [L3Ti(dipic)] exhibited excellent activity with an IC50 value of 0.5 ± 0.1 μM in Hela S3 and 1.0 ± 0.1 μM in Hep G2.
Collapse
Affiliation(s)
- Tiankun Zhao
- Fachbereich Chemie and Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
11
|
Sá DS, Fernandes AF, Silva CDS, Costa PPC, Fonteles MC, Nascimento NRF, Lopes LGF, Sousa EHS. Non-nitric oxide based metallovasodilators: synthesis, reactivity and biological studies. Dalton Trans 2016; 44:13633-40. [PMID: 26143862 DOI: 10.1039/c5dt01582k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is an increasing number of compounds developed to target one or more pathways involved in vasodilation. Some studies conducted with azaindole and indazole derivatives showed cardiovascular activity associated with these compounds. Fast and easy structural modification of these organic molecules can be achieved using metal complexes promoting a much larger spatial change than organic strategies, potentially leading to novel drugs. Here, we have prepared a series of complexes with a formula cis-[RuCl(L)(bpy)(2)]PF(6), where L = 7-azaindole (ain), 5-azaindole (5-ain), 4-azaindole (4-ain), indazole (indz), benzimidazole (bzim) or quinoline (qui), which were characterized by spectroscopic and electrochemical techniques (CV, DPV). These compounds showed reasonable stability exhibiting photoreactivity only at low wavelength along with superoxide scavenger activity. Cytotoxicity assays indicated their low activity preliminarily supporting in vivo application. Interestingly, vasodilation assays conducted in rat aorta exhibited great activity that largely improved compared to free ligands and even better than the well-studied organic compound (BAY 41-42272), with IC(50) reaching 55 nM. These results have validated this strategy opening new opportunities to further develop cardiovascular agents based on metallo-bicyclic rings.
Collapse
Affiliation(s)
- Denise S Sá
- Department of Chemistry, Federal Institute of Bahia, Salvador, 40301-150, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Göbel P, Ritterbusch F, Helms M, Bischof M, Harms K, Jung M, Meggers E. Probing Chiral Recognition of Enzyme Active Sites with Octahedral Iridium(III) Propeller Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Anstaett P, Gasser G. Organometallic Complexes as Enzyme Inhibitors: A Conceptual Overview. BIOORGANOMETALLIC CHEMISTRY 2014:1-42. [DOI: 10.1002/9783527673438.ch01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Martin EK, Pagano N, Sherlock ME, Harms K, Meggers E. Synthesis and anticancer activity of ruthenium half-sandwich complexes comprising combined metal centrochirality and planar chirality. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Dörr M, Meggers E. Metal complexes as structural templates for targeting proteins. Curr Opin Chem Biol 2014; 19:76-81. [PMID: 24561508 DOI: 10.1016/j.cbpa.2014.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
This article reviews recent advances in the design and discovery of inert metal complexes as protein binders. In these metal-based probes or drug candidates, the metal is supposed to exert a purely structural role by organizing the coordinating ligands in the three dimensional space to achieve a shape and functional group complementarity with the targeted protein pockets. Presented examples of sandwich, half-sandwich and octahedral d(6)-metal complexes reinforce previous perceptions that metal complexes are highly promising scaffolds for the design of small-molecule protein binders and complement the molecular diversity of organic chemistry by opening untapped chemical space.
Collapse
Affiliation(s)
- Markus Dörr
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| |
Collapse
|
16
|
|
17
|
Yong J, Lu C, Wu X. Synthesis of isoxazole moiety containing ferrocene derivatives and preliminarily in vitro anticancer activity. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00151f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Avti PK, Maysinger D, Kakkar A. Alkyne-azide "click" chemistry in designing nanocarriers for applications in biology. Molecules 2013; 18:9531-49. [PMID: 23966076 PMCID: PMC6270461 DOI: 10.3390/molecules18089531] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
The alkyne-azide cycloaddition, popularly known as the "click" reaction, has been extensively exploited in molecule/macromolecule build-up, and has offered tremendous potential in the design of nanomaterials for applications in a diverse range of disciplines, including biology. Some advantageous characteristics of this coupling include high efficiency, and adaptability to the environment in which the desired covalent linking of the alkyne and azide terminated moieties needs to be carried out. The efficient delivery of active pharmaceutical agents to specific organelles, employing nanocarriers developed through the use of "click" chemistry, constitutes a continuing topical area of research. In this review, we highlight important contributions click chemistry has made in the design of macromolecule-based nanomaterials for therapeutic intervention in mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Pramod K. Avti
- Montreal Heart Institute, Research Center, 5000 Bélanger Est, Montréal, QC H1T 1C8, Canada
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| |
Collapse
|
19
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
20
|
Deepthi SB, Trivedi R, Giribabu L, Sujitha P, Kumar CG. Effect of amide-triazole linkers on the electrochemical and biological properties of ferrocene-carbohydrate conjugates. Dalton Trans 2013; 42:1180-90. [DOI: 10.1039/c2dt31927f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Liu YT, Lian GD, Yin DW, Su BJ. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 100:131-137. [PMID: 22487251 DOI: 10.1016/j.saa.2012.03.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/28/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Metal (II) complexes derived from S-benzyl-N-(1-ferrocenyl-3-(4-methylbenzene)acrylketone) dithiocarbazate; HL(1), S-benzyl-N-(1-ferrocenyl-3-(4-chlorobenzene)acrylketone)dithiocarbazate; HL(2), all the compounds were characterized using various spectroscopic techniques. The molar conductance data revealed that the chelates were non-electrolytes. IR spectra showed that the Schiff bases were coordinated to the metal ions in a bidentate manner with N, S donor sites. The ligands and their metal complexes have been screened for in vitro antibacterial, antifungal properties. The result of these studies have revealed that zinc (II) complexes 6 and 13 of both the ligands and copper (II) complexes 9 of the HL(2) were observed to be the most active against all bacterial strains, antifungal activity was overall enhanced after complexation of the ligands.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | | | | | | |
Collapse
|
22
|
Kilpin KJ, Dyson PJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci 2013. [DOI: 10.1039/c3sc22349c] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Salmon AJ, Williams ML, Wu QK, Morizzi J, Gregg D, Charman SA, Vullo D, Supuran CT, Poulsen SA. Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J Med Chem 2012; 55:5506-17. [PMID: 22540953 DOI: 10.1021/jm300427m] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, 20 metallocene-based compounds comprising extensive structural diversity were synthesized and evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. These compounds proved moderate to good CA inhibitors in vitro, with several compounds displaying selectivity for cancer-associated isozymes CA IX and CA XII compared to off-target CA I and CA II. Compound 6 was the most potent ferrocene-based inhibitor with K(i)s of 5.9 and 6.8 nM at CA IX and XII, respectively. A selection of key drug-like parameters comprising Log P, Log D, solubility, and in vitro metabolic stability and permeability were measured for two of the ferrocene-based compounds, regioisomers 1 and 5. Compounds 1 and 5 were found to have characteristics consistent with lipophilic compounds, however, our findings show that the lipophilicity of the ferrocene moiety is not well modeled by replacement with either a naphthyl or a phenyl moiety in software prediction tools.
Collapse
Affiliation(s)
- Adam J Salmon
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Trivedi R, Deepthi SB, Giribabu L, Sridhar B, Sujitha P, Kumar CG, Ramakrishna KVS. Synthesis, Crystal Structure, Electronic Spectroscopy, Electrochemistry and Biological Studies of Ferrocene-Carbohydrate Conjugates. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Salmon AJ, Williams ML, Hofmann A, Poulsen SA. Protein crystal structures with ferrocene and ruthenocene-based enzyme inhibitors. Chem Commun (Camb) 2012; 48:2328-30. [DOI: 10.1039/c2cc15625c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Liu YT, Lian GD, Yin DW, Su BJ. Synthesis and antimicrobial activity of some novel ferrocene-based Schiff bases containing a ferrocene unit. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0440-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Salmon AJ, Williams ML, Maresca A, Supuran CT, Poulsen SA. Synthesis of glycoconjugate carbonic anhydrase inhibitors by ruthenium-catalysed azide-alkyne 1,3-dipolar cycloaddition. Bioorg Med Chem Lett 2011; 21:6058-61. [DOI: 10.1016/j.bmcl.2011.08.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/12/2011] [Indexed: 01/30/2023]
|
28
|
Patra M, Metzler-Nolte N. Azidomethyl-ruthenocene: facile synthesis of a useful metallocene derivative and its application in the 'click' labelling of biomolecules. Chem Commun (Camb) 2011; 47:11444-6. [PMID: 21935541 DOI: 10.1039/c1cc14537a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient synthesis of azidomethyl-ruthenocene and its use in the covalent labelling of amino acids, peptides and a peptide nucleic acid (PNA) monomer derivative by Cu(I) catalyzed azide-alkyne coupling (Cu-AAC, "click chemistry") are described.
Collapse
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische Chemie I, Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | | |
Collapse
|
29
|
Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg Med Chem Lett 2011; 21:2866-8. [DOI: 10.1016/j.bmcl.2011.03.082] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 11/20/2022]
|
30
|
Rudolf B. Synthesis of metallocarbonyl substituted 1,2,3-triazole complexes via copper(I)-catalyzed azide–alkyne cycloaddition. CAN J CHEM 2010. [DOI: 10.1139/v10-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
(η5-C5H5)M(CO)x(η1-N-maleimidato) (M = Fe, x = 2; M = W, x = 3) complexes react with propargylamine and propargyl alcohol giving products from the Michael addition to the η1-N-maleimidato ligand. Metallocarbonyl compounds bearing a terminal alkyne group were reacted with organic azides affording corresponding 1,2,3-triazoles in high yields. One of these metallocarbonyl 1,2,3-triazoles (M = Fe, x = 2) was characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Bogna Rudolf
- Department of Organic Chemistry, University of Łódź, Tamka 12, Łódź 91-403, Poland. (e-mail: )
| |
Collapse
|
31
|
Tinnis F, Adolfsson H. Asymmetric transfer hydrogenation of ketones catalyzed by rhodium complexes containing amino acid triazole ligands. Org Biomol Chem 2010; 8:4536-9. [DOI: 10.1039/c0ob00400f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Loughrey BT, Williams ML, Healy PC, Innocenti A, Vullo D, Supuran CT, Parsons PG, Poulsen SA. Novel organometallic cationic ruthenium(II) pentamethylcyclopentadienyl benzenesulfonamide complexes targeted to inhibit carbonic anhydrase. J Biol Inorg Chem 2009; 14:935-45. [PMID: 19390880 DOI: 10.1007/s00775-009-0506-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
Abstract
Cationic ruthenium(II) pentamethylcyclopentadienyl benzenesulfonamide sandwich complexes have been synthesized and screened for enzymatic inhibition of the physiologically dominant carbonic anhydrase (CA) isozymes: human CA I and II, mitochondrial isozymes VA and VB, and the cancer-associated isozyme IX. The complexes demonstrated weaker binding to CAs compared with typical aromatic sulfonamides, inhibiting the enzyme at high nanomolar concentrations. An in vitro cytotoxic evaluation of the complexes was also undertaken against a range of tumorigenic cell lines and a healthy human cell line. Complexes inhibited the growth of cancerous cells at low micromolar concentrations while expressing lower levels of toxicity towards the normal human cell line. Factors influencing the synthesis, cytotoxicity, and enzyme affinity for this series of organometallic complexes are discussed.
Collapse
|
33
|
|
34
|
Loughrey BT, Williams ML, Poulsen SA, Healy PC. (η-Penta-methyl-cyclo-penta-dien-yl)(η-p-toluene-sulfonamide)ruthenium(II) tetra-phenyl-borate. Acta Crystallogr Sect E Struct Rep Online 2008; 64:m1568. [PMID: 21581173 PMCID: PMC2960125 DOI: 10.1107/s1600536808037689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/13/2008] [Indexed: 11/10/2022]
Abstract
The crystal structure of the title compound, [Ru(C10H15)(C7H9NO2S)]C24H20B, has been determined as part of our investigation into the structural and biological properties of organometallic RuII–arene–Cp* complex salts of the type [R-PhRuCp*]+·X− (where Cp* is pentamethylcyclopentadiene). Tethering the RuCp* group to the benzene ring of p-toluenesulfonamide results in only minor changes to the molecular geometry of the sulfonamide, but, together with crystallization as the [BPh4]− salt, effectively blocks involvement of the sulfonamide group in N—H⋯O hydrogen-bonding networks.
Collapse
Affiliation(s)
- Bradley T Loughrey
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane 4111, Australia
| | | | | | | |
Collapse
|
35
|
Kong KV, Leong WK, Ng SP, Nguyen TH, Lim LHK. Osmium carbonyl clusters: a new class of apoptosis inducing agents. ChemMedChem 2008; 3:1269-75. [PMID: 18433076 DOI: 10.1002/cmdc.200800069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osmium carbonyl clusters, especially the cluster [Os(3)(CO)(10)(NCCH(3))(2)], were found to be active against four cancer cell lines, namely, ER+ breast carcinoma (MCF-7), ER- breast carcinoma (MDA-MB-231), metastatic colorectal adenocarcinoma (SW620), and hepatocarcinoma (Hep G2). The mode of action was studied in MCF-7 and MDA-MB-231 cell lines by a number of morphological and apoptosis assays, all of which pointed to the induction of apoptosis.
Collapse
Affiliation(s)
- Kien Voon Kong
- Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
36
|
Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett 2008; 18:4624-7. [PMID: 18644716 DOI: 10.1016/j.bmcl.2008.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 11/18/2022]
Abstract
A library of 10 novel benzenesulfonamides containing triazole-tethered phenyl 'tail' moieties were synthesized by a Cu(I) catalyzed 1,3-dipolar cycloaddition reaction (DCR) (i.e., click chemistry) between 4-azido benzenesulfonamide and a panel of variously substituted phenyl acetylenes. These compounds were very effective inhibitors (low nanomolar) of the human mitochondrial carbonic anhydrase isozymes VA and VB. Mitochondrial carbonic anhydrases are potential targets for anti-obesity therapies, acting to reduce lipogenesis through a novel mechanism of action. The inhibitors reported here should prove valuable as lead compounds to further investigate the potential of CA inhibition for this novel therapeutic application.
Collapse
Affiliation(s)
- Sally-Ann Poulsen
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Qld. 4111, Australia.
| | | | | | | | | |
Collapse
|
37
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
38
|
Wilkinson BL, Innocenti A, Vullo D, Supuran CT, Poulsen SA. Inhibition of carbonic anhydrases with glycosyltriazole benzene sulfonamides. J Med Chem 2008; 51:1945-53. [PMID: 18307288 DOI: 10.1021/jm701426t] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of glycoconjugate benzene sulfonamides have been synthesized and investigated for their ability to inhibit the enzymatic activity of physiologically relevant human carbonic anhydrase (hCA) isozymes: hCA I, II, and tumor-associated IX. Our synthetic strategy directly links the known CA pharmacophore (ArSO 2NH 2) to a sugar "tail" moiety through a rigid 1,2,3-triazole linker unit using the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction or "click chemistry". Many of the glycoconjugates were potent CA inhibitors and exhibited some isozyme selectivity. In particular, the methyl-D-glucuronate triazoles 6 and 14 were potent inhibitors of hCA IX (K(i)s 9.9 and 8.4 nM, respectively) with selectivity also favoring this isozyme. Other exceptional compounds included the deprotected beta-D-ribofuranosyl triazole 15 and alpha-D-mannosyl triazole 17, which were potent and selective hCA II inhibitors (K(i) 7.5 nM and K(i) 2.3 nM, respectively). Collectively, the results confirm that modification of ring size, stereochemical configuration, and chain length in the sugar tail moiety of glycoconjugate CA inhibitors permits tunable potency and selectivity that may constitute an important avenue for the future development of efficacious and selective CA-based therapeutics.
Collapse
Affiliation(s)
- Brendan L Wilkinson
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, 170 Kessels Road, Nathan, Queensland, Australia
| | | | | | | | | |
Collapse
|