1
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
2
|
Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem 2023; 246:114989. [PMID: 36527934 DOI: 10.1016/j.ejmech.2022.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The proteolytically-activated G protein-coupled receptor (GPCR) protease-activated receptor 2 (PAR2), is implicated in various cancers and inflammatory diseases. Synthetic ligands and in vitro imaging probes targeting this receptor have been developed with low nanomolar affinity, however, no in vivo imaging probes exist for PAR2. Here, we report the strategic design, synthesis, and biological evaluation of a series of novel 4-fluorobenzoylated PAR2-targeting peptides derived from 2f-LIGRLO-NH2 (2f-LI-) and Isox-Cha-Chg-Xaa-NH2 (Isox-) peptide families, where the 4-fluorobenzoyl moiety acts as the 19F-standard of an 18F-labeled probe for potential use in in vivo imaging. We found that several of the 4-fluorobenzoylated peptides from the 2f-LI-family exhibited PAR2 selectivity with moderate potency (EC50 = 151-252 nM), whereas several from the Isox-family exhibited PAR2 selectivity with high potency (EC50 = 13-42 nM). Our lead candidate, Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 (EC50 = 13 nM), was successfully synthesized with fluorine-18 with a radiochemical yield of 37%, radiochemical purity of >98%, molar activity of 20 GBq/μmol, and an end of synthesis time of 125 min. Biodistribution studies and preliminary PET imaging of the tracer in mice showed predominantly renal clearance. This 18F-labeled tracer is the first reported PAR2 imaging agent with potential for use in vivo. Future work will explore the use of this tracer in cancer xenografts and inflammation models involving upregulation of PAR2 expression.
Collapse
|
3
|
The development of proteinase-activated receptor-2 modulators and the challenges involved. Biochem Soc Trans 2021; 48:2525-2537. [PMID: 33242065 PMCID: PMC7752072 DOI: 10.1042/bst20200191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Protease-activated receptor-2 (PAR2) has been extensively studied since its discovery in the mid-1990. Despite the advances in understanding PAR2 pharmacology, it has taken almost 25 years for the first inhibitor to reach clinical trials, and so far, no PAR2 antagonist has been approved for human use. Research has employed classical approaches to develop a wide array of PAR2 agonists and antagonists, consisting of peptides, peptoids and antibodies to name a few, with a surge in patent applications over this period. Recent breakthroughs in PAR2 structure determination has provided a unique insight into proposed PAR2 ligand binding sites. Publication of the first crystal structures of PAR2 resolved in complex with two novel non-peptide small molecule antagonists (AZ8838 and AZ3451) revealed two distinct binding pockets, originally presumed to be allosteric sites, with a PAR2 antibody (Fab3949) used to block tethered ligand engagement with the peptide-binding domain of the receptor. Further studies have proposed orthosteric site occupancy for AZ8838 as a competitive antagonist. One company has taken the first PAR2 antibody (MEDI0618) into phase I clinical trial (NCT04198558). While this first-in-human trial is at the early stages of the assessment of safety, other research into the structural characterisation of PAR2 is still ongoing in an attempt to identify new ways to target receptor activity. This review will focus on the development of novel PAR2 modulators developed to date, with an emphasis placed upon the advances made in the pharmacological targeting of PAR2 activity as a strategy to limit chronic inflammatory disease.
Collapse
|
4
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
5
|
Humphries TLR, Johnson LA, Masci PP, Gobe GC, Vesey DA. Progress curve analysis of microtitre plate plasma clotting assays. Assessment of tissue factor levels. Anal Biochem 2020; 614:114060. [PMID: 33271154 DOI: 10.1016/j.ab.2020.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
MTP plasma clotting assays monitor the time course of fibrin formation in re-calcified plasma by absorbance measurements and are increasingly used as alternatives to traditional one-point clot time assays employed in clinical laboratories to detect thrombotic disorders. The parameters derived from these analyses are analogous to thromboelastography viz. time, rate and maximum extent of clot formation. The derived parameters, based on the whole course of the clotting reaction are more robust, informative and quantitative than single-point clot time assays. However, the parameters themselves are usually obtained arbitrarily by crude graphical analysis of subjectively selected points of progress curves. The current work aimed to investigate the sensitivity and reproducibility of an MTP clotting assay and examine its suitability for measuring tissue factor (TF) levels in cell culture medium and patient urine. The results demonstrate that progress curves can be analysed by fitting a logistic equation, derived from a simplified autocatalytic clot formation model. The parameters, maximum amplitude (Fm), rate constant (k), time to half-maximum amplitude (tm) and maximum rate of clot formation (vm), fit a power curve showing limiting effects with increasing TF concentration. Log/log plots of tm and k against TF concentration provide standard curves for assessment of unknowns.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Lambro A Johnson
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Paul P Masci
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
6
|
LeSarge JC, Thibeault P, Milne M, Ramachandran R, Luyt LG. High Affinity Fluorescent Probe for Proteinase-Activated Receptor 2 (PAR2). ACS Med Chem Lett 2019; 10:1045-1050. [PMID: 31312406 DOI: 10.1021/acsmedchemlett.9b00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
PAR2 is a proteolytically activated G protein-coupled receptor (GPCR) that is implicated in various cancers and inflammatory diseases. Ligands with low nanomolar affinity for PAR2 have been developed, but there is a paucity of research on the development of PAR2-targeting imaging probes. Here, we report the development of seven novel PAR2-targeting compounds. Four of these compounds are highly potent and selective PAR2-targeting peptides (EC50 = 10 to 23 nM) that have a primary amine handle available for facile conjugation to various imaging components. We describe a peptide of the sequence Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2 as the most potent and highest affinity PAR2-selective fluorescent probe reported to date (EC50 = 16 nM, K D = 38 nM). This compound has a greater than 10-fold increase in potency and binding affinity for PAR2 compared to the leading previously reported probe and is conjugated to a red-shifted fluorophore, enabling in vitro and in vivo studies.
Collapse
Affiliation(s)
| | | | - Mark Milne
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | | | - Leonard G. Luyt
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| |
Collapse
|
7
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
8
|
Kennedy AJ, Ballante F, Johansson JR, Milligan G, Sundström L, Nordqvist A, Carlsson J. Structural Characterization of Agonist Binding to Protease-Activated Receptor 2 through Mutagenesis and Computational Modeling. ACS Pharmacol Transl Sci 2018; 1:119-133. [PMID: 32219208 DOI: 10.1021/acsptsci.8b00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Indexed: 12/26/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor that is activated by proteolytic cleavage of its N-terminus. The unmasked N-terminal peptide then binds to the transmembrane bundle, leading to activation of intracellular signaling pathways associated with inflammation and cancer. Recently determined crystal structures have revealed binding sites of PAR2 antagonists, but the binding mode of the peptide agonist remains unknown. In order to generate a model of PAR2 in complex with peptide SLIGKV, corresponding to the trypsin-exposed tethered ligand, the orthosteric binding site was probed by iterative combinations of receptor mutagenesis, agonist ligand modifications, and data-driven structural modeling. Flexible-receptor docking identified a conserved binding mode for agonists related to the endogenous ligand that was consistent with the experimental data and allowed synthesis of a novel peptide (1-benzyl-1H[1,2,3]triazole-4-yl-LIGKV) with functional potency higher than that of SLIGKV. The final model may be used to understand the structural basis of PAR2 activation and in virtual screens to identify novel agonists and competitive antagonists. The combined experimental and computational approach to characterize agonist binding to PAR2 can be extended to study the many other G protein-coupled receptors that recognize peptides or proteins.
Collapse
Affiliation(s)
- Amanda J Kennedy
- Discovery Sciences and Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Flavio Ballante
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Johan R Johansson
- Discovery Sciences and Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Linda Sundström
- Discovery Sciences and Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Anneli Nordqvist
- Discovery Sciences and Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Jiang Y, Yau MK, Kok WM, Lim J, Wu KC, Liu L, Hill TA, Suen JY, Fairlie DP. Biased Signaling by Agonists of Protease Activated Receptor 2. ACS Chem Biol 2017; 12:1217-1226. [PMID: 28169521 DOI: 10.1021/acschembio.6b01088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer, and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing, and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - W. Mei Kok
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Yau MK, Liu L, Suen JY, Lim J, Lohman RJ, Jiang Y, Cotterell AJ, Barry GD, Mak JYW, Vesey DA, Reid RC, Fairlie DP. PAR2 Modulators Derived from GB88. ACS Med Chem Lett 2016; 7:1179-1184. [PMID: 27994760 DOI: 10.1021/acsmedchemlett.6b00306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
PAR2 antagonists have potential for treating inflammatory, respiratory, gastrointestinal, neurological, and metabolic disorders, but few antagonists are known. Derivatives of GB88 (3) suggest that all four of its components bind at distinct PAR2 sites with the isoxazole, cyclohexylalanine, and isoleucine determining affinity and selectivity, while the C-terminal substituent determines agonist/antagonist function. Here we report structurally similar PAR2 ligands with opposing functions (agonist vs antagonist) upon binding to PAR2. A biased ligand AY117 (65) was found to antagonize calcium release induced by PAR2 agonists trypsin and hexapeptide 2f-LIGRLO-NH2 (IC50 2.2 and 0.7 μM, HT29 cells), but it was a selective PAR2 agonist in inhibiting cAMP stimulation and activating ERK1/2 phosphorylation. It showed anti-inflammatory properties both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rink-Jan Lohman
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yuhong Jiang
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam J. Cotterell
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant D. Barry
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey Y. W. Mak
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David A. Vesey
- Centre
for Kidney Research, Department of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Robert C. Reid
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Yau MK, Lim J, Liu L, Fairlie DP. Protease activated receptor 2 (PAR2) modulators: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:471-83. [PMID: 26936077 DOI: 10.1517/13543776.2016.1154540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protease activated receptor 2 (PAR2) is a self-activated G protein-coupled receptor that has been implicated in several diseases, including inflammatory, gastrointestinal, respiratory, metabolic diseases, cancers and others, making it an important prospective drug target. No known endogenous ligands are available for PAR2, so having potent exogenous agonists and antagonists can be helpful for studying physiological functions of PAR2. AREAS COVERED This review covers agonist-, antagonist-, antibody- and pepducin-based modulators of PAR2 reported in patent applications between 2010-2015, along with their available structure-activity relationships, biological activities and potential uses for studying PAR2. EXPERT OPINION In the last six years, substantial efforts were made towards developing PAR2 modulators, but most lack potency or selectivity or have poor pharmacokinetic profiles. Many PAR2 modulators were assessed by measuring Gαq protein-mediated calcium release in cells. This may be insufficient to fully characterize ligand function, since different ligands signal through PAR2 via multiple signaling pathways. It may be feasible to develop biased ligands as drugs that can selectively modulate one or more specific signaling pathways linking PAR2 to a specific diseased state. Accordingly, potent, orally bioavailable, pathway- and receptor-selective PAR2 modulators may be an achievable goal to realizing effective drugs that can treat PAR2-mediated diseases.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - Junxian Lim
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - Ligong Liu
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - David P Fairlie
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|
12
|
Yau MK, Suen JY, Xu W, Lim J, Liu L, Adams MN, He Y, Hooper JD, Reid RC, Fairlie DP. Potent Small Agonists of Protease Activated Receptor 2. ACS Med Chem Lett 2016; 7:105-10. [PMID: 26819675 DOI: 10.1021/acsmedchemlett.5b00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Many proteases cut the PAR2 N-terminus resulting in conformational changes that activate cells. Synthetic peptides corresponding to newly exposed N-terminal sequences of PAR2 also activate the receptor at micromolar concentrations. PAR2-selective small molecules reported here induce PAR2-mediated intracellular calcium signaling at nanomolar concentrations (EC50 = 15-100 nM, iCa(2+), CHO-hPAR2 cells). These are the most potent and efficient small molecule ligands to activate PAR2-mediated calcium release and chemotaxis, including for human breast and prostate cancer cells.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Jacky Y. Suen
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Weijun Xu
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Junxian Lim
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ligong Liu
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Mark N. Adams
- Translational
Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Yaowu He
- Translational
Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - John D. Hooper
- Translational
Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Robert C. Reid
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - David P. Fairlie
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
13
|
Perry SR, Xu W, Wirija A, Lim J, Yau MK, Stoermer MJ, Lucke AJ, Fairlie DP. Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery. J Chem Inf Model 2015; 55:1181-91. [PMID: 26000704 DOI: 10.1021/acs.jcim.5b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor (GPCR) involved in inflammation and metabolism. It is activated through cleavage of its N-terminus by proteases. The new N-terminus functions as a tethered ligand that folds back and intramolecularly activates PAR2, initiating multiple downstream signaling pathways. The only compounds reported to date to inhibit PAR2 activation are of moderate potency. Three structural models for PAR2 have been constructed based on sequence homology with known crystal structures for bovine rhodopsin, human ORL-1 (also called nociceptin/orphanin FQ receptor), and human PAR1. The three PAR2 model structures were compared and used to predict potential interactions with ligands. Virtual screening for ligands using the Chembridge database, and either ORL-1 or PAR1 derived PAR2 models led to identification of eight new small molecule PAR2 antagonists (IC50 10-100 μM). Notably, the most potent compound 1 (IC50 11 μM) was derived from the less homologous template protein, human ORL-1. The results suggest that virtual screening against multiple homology models of the same GPCR can produce structurally diverse antagonists and that this may be desirable even when some models have less sequence homology with the target protein.
Collapse
Affiliation(s)
- Samuel R Perry
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Wirija
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
15
|
Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 2012; 165:1413-23. [PMID: 21806599 DOI: 10.1111/j.1476-5381.2011.01610.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Many cells express proteinase activated receptor 2 (PAR2) on their plasma membrane. PAR2 is activated by proteolytic enzymes, such as trypsin and tryptase that cleave the receptor N-terminus, inititating signalling to intracellular G proteins. Studies on PAR2 have relied heavily upon activating effects of proteases and peptide agonists that lack stability and bioavailability in vivo. EXPERIMENTAL APPROACH A novel small molecule agonist GB110 and an antagonist GB88 were characterized in vitro against trypsin, peptide agonists, PAR2 antibody, PAR1 agonists and flow cytometry,in seven cell lines using intracellular Ca(2+) mobilization and examined in vivo against PAR2- and PAR1-induced rat paw oedema. KEY RESULTS GB110 is a potent non-peptidic agonist activating PAR2-mediated Ca(2+) release in HT29 cells (EC(50) ∼200 nM) and six other human cell lines, inducing PAR2 internalization. GB88 is a unique PAR2 antagonist, inhibiting PAR2 activated Ca(2+) release (IC(50) ∼2 µM) induced by native (trypsin) or synthetic peptide and non-peptide agonists. GB88 was a competitive and surmountable antagonist of agonist 2f-LIGRLO-NH(2), a competitive but insurmountable antagonist of agonist GB110, and a non-competitive insurmountable antagonist of trypsin. GB88 was orally active and anti-inflammatory in vivo, inhibiting acute rat paw oedema elicited by agonist GB110 and proteolytic or peptide agonists of PAR2 but not by corresponding agonists of PAR1 or PAR4. CONCLUSIONS AND IMPLICATIONS The novel PAR2 agonist and antagonist modulate intracellular Ca(2+) and rat paw oedema, providing novel molecular tools for examining PAR2-mediated diseases.
Collapse
Affiliation(s)
- J Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Stoermer MJ, Flanagan B, Beyer RL, Madala PK, Fairlie DP. Structures of peptide agonists for human protease activated receptor 2. Bioorg Med Chem Lett 2012; 22:916-9. [PMID: 22209488 DOI: 10.1016/j.bmcl.2011.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor in being self-activated, after pruning of the N-terminus by serine proteases like trypsin and tryptase. Short synthetic peptides corresponding to the newly exposed N-terminal hexapeptide sequence also activate PAR2 on immunoinflammatory, cancer and many normal cell types. (1)H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy were used here to search for structural clues to activating mechanisms of the hexapeptide agonists SLIGRL (rat), SLIGKV (human) and the peptidomimetic analogue, 2-furoyl-LIGRLO. Either with a free or acetyl capped N-terminus, these agonist peptides display significant propensity in aprotic (DMSO) or lipidic (water-SDS) solvents for turn-like conformations, which are predicted to be receptor-binding conformations in the transmembrane or loops region of PAR2. These motifs may be valuable for the design of small molecule PAR2 agonists and antagonists as prospective new drugs for regulating inflammatory and proliferative diseases.
Collapse
Affiliation(s)
- Martin J Stoermer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
17
|
Congreve M, Langmead CJ, Mason JS, Marshall FH. Progress in structure based drug design for G protein-coupled receptors. J Med Chem 2011; 54:4283-311. [PMID: 21615150 PMCID: PMC3308205 DOI: 10.1021/jm200371q] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Limited, BioPark, Welwyn Garden City, Hertfordshire, UK.
| | | | | | | |
Collapse
|
18
|
Boitano S, Flynn AN, Schulz SM, Hoffman J, Price TJ, Vagner J. Potent agonists of the protease activated receptor 2 (PAR2). J Med Chem 2011; 54:1308-13. [PMID: 21294569 DOI: 10.1021/jm1013049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel peptidomimetic pharmacophores to PAR(2) were designed based on the known activating peptide SLIGRL-NH(2). A set of 15 analogues was evaluated with a model cell line (16HBE14o-) that highly expresses PAR(2). Cells exposed to the PAR(2) activating peptide with N-terminal 2-furoyl modification (2-furoyl-LIGRLO-NH(2)) initiated increases in intracellular calcium concentration ([Ca(2+)](i) EC(50) = 0.84 μM) and in vitro physiological responses as measured by the xCELLigence real time cell analyzer (RTCA EC(50) = 138 nM). We discovered two selective PAR(2) agonists with comparable potency: compound 1 (2-aminothiazol-4-yl; Ca(2+) EC(50) = 1.77 μM, RTCA EC(50) = 142 nM) and compound 2 (6-aminonicotinyl; Ca(2+) EC(50) = 2.60 μM, RTCA EC(50) = 311 nM). Unlike the previously described agonist, these novel agonists are devoid of the metabolically unstable 2-furoyl modification and thus provide potential advantages for PAR(2) peptide design for in vitro and in vivo studies. The novel compounds described herein also serve as a starting point for structure-activity relationship (SAR) design and are, for the first time, evaluated via a unique high throughput in vitro physiological assay. Together these will lead to discovery of more potent agonists and antagonists of PAR(2).
Collapse
Affiliation(s)
- Scott Boitano
- Arizona Respiratory Center and Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, Arizona 85724, United States
| | | | | | | | | | | |
Collapse
|
19
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP. Novel Agonists and Antagonists for Human Protease Activated Receptor 2. J Med Chem 2010; 53:7428-40. [DOI: 10.1021/jm100984y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Grant D. Barry
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| | - Jacky Y. Suen
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| | - Giang T. Le
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| | - Adam Cotterell
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|