1
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Gilkes JM, Frampton RA, Board AJ, Hudson AO, Price TG, Morris VK, Crittenden DL, Muscroft‐Taylor AC, Sheen CR, Smith GR, Dobson RCJ. A new lysine biosynthetic enzyme from a bacterial endosymbiont shaped by genetic drift and genome reduction. Protein Sci 2024; 33:e5083. [PMID: 38924211 PMCID: PMC11201819 DOI: 10.1002/pro.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.
Collapse
Affiliation(s)
- Jenna M. Gilkes
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Rebekah A. Frampton
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Amanda J. Board
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life SciencesRochesterNew YorkUSA
| | - Thomas G. Price
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | - Vanessa K. Morris
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Deborah L. Crittenden
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | | | - Campbell R. Sheen
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Grant R. Smith
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Mackie ERR, Barrow AS, Giel MC, Hulett MD, Gendall AR, Panjikar S, Soares da Costa TP. Repurposed inhibitor of bacterial dihydrodipicolinate reductase exhibits effective herbicidal activity. Commun Biol 2023; 6:550. [PMID: 37217566 DOI: 10.1038/s42003-023-04895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.
Collapse
Affiliation(s)
- Emily R R Mackie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mark D Hulett
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC, 3168, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, VIC, 3800, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
4
|
Mitsakos V. Colorimetric ortho-aminobenzaldehyde assay developed for the high-throughput chemical screening of inhibitors against dihydrodipicolinate synthase from pathogenic bacteria. Heliyon 2023; 9:e14304. [PMID: 36967940 PMCID: PMC10036502 DOI: 10.1016/j.heliyon.2023.e14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In search of a new class of antibacterial agents, compounds that target the essential bacterial enzyme, dihydrodipicolinate synthase (DHDPS), are of interest to drug discovery efforts. DHDPS catalyzes the first committed step in the diaminopimelate (DAP) pathway to the biosynthesis of lysine in bacteria and plants. The ortho-aminobenzaldehyde (o-ABA) assay is typically used as a qualitative tool for identifying fractions containing DHDPS during purification. This report is about the development of a high-throughput o-ABA assay format for the quantification of DHDPS enzyme activity using multi-well plates. The colorimetric assay is suitable for determining enzymatic parameters (K M and Vmax) and identifying inhibitors of DHDPS in a high-throughput screen.
Collapse
|
5
|
RK-33 Is a Broad-Spectrum Antiviral Agent That Targets DEAD-Box RNA Helicase DDX3X. Cells 2020; 9:cells9010170. [PMID: 31936642 PMCID: PMC7016805 DOI: 10.3390/cells9010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/17/2023] Open
Abstract
Viral disease is one of the greatest burdens for human health worldwide, with an urgent need for efficacious antiviral strategies. While antiviral drugs are available, in many cases, they are prone to the development of drug resistance. A way to overcome drug resistance associated with common antiviral therapies is to develop antivirals targeting host cellular co-factors critical to viral replication, such as DEAD-box helicase 3 X-linked (DDX3X), which plays key roles in RNA metabolism and the antiviral response. Here, we use biochemical/biophysical approaches and infectious assays to show for the first time that the small molecule RK-33 has broad-spectrum antiviral action by inhibiting the enzymatic activities of DDX3X. Importantly, we show that RK-33 is efficacious at low micromolar concentrations in limiting infection by human parainfluenza virus type 3 (hPIV-3), respiratory syncytial virus (RSV), dengue virus (DENV), Zika virus (ZIKV) or West Nile virus (WNV)—for all of which, no Food and Drug Administration (FDA)-approved therapeutic is widely available. These findings establish for the first time that RK-33 is a broad-spectrum antiviral agent that blocks DDX3X’s catalytic activities in vitro and limits viral replication in cells.
Collapse
|
6
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
8
|
Plant DHDPR forms a dimer with unique secondary structure features that preclude higher-order assembly. Biochem J 2018; 475:137-150. [PMID: 29187521 DOI: 10.1042/bcj20170709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.
Collapse
|
9
|
Amino Y, Nishi S, Izawa K. Stereo-Selective Preparation of Teneraic Acid, trans-(2S,6S)-Piperidine-2,6-dicarboxylic Acid, via Anodic Oxidation and Cobalt-Catalyzed Carbonylation. Chem Pharm Bull (Tokyo) 2017; 65:854-861. [PMID: 28867713 DOI: 10.1248/cpb.c17-00391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Teneraic acid (piperidine-2,6-dicarboxylic acid) is a naturally occurring imino acid that comprises three stereoisomers due to its two asymmetric centers at C2 and C6. The configuration of natural teneraic acid is reported to correspond to trans-(2S,6S). However, a few studies are focused on the stereospecific synthesis of trans-(2S,6S)-teneraic acid. The present study investigates a convenient synthetic method that includes regiospecific anodic oxidation and stereospecific cobalt-catalyzed carbonylation to obtain trans-(2S,6S)-teneraic acid. Methyl (S)-N-benzoyl-α-methoxypipecolate, the key intermediate that displays a structure that corresponds to an intermediate (N-α-hydroxyalkyl amide) of intramolecular amidocarbonylation, was obtained via an anodic oxidation of methyl (S)-N-benzoylpipecolate. Subsequently, cobalt-catalyzed carbonylation converted the methyl (S)-N-benzoyl-α-methoxypipecolate to trans-(2S,6S)-N-benzoyl-teneraic acid dimethyl ester in good optical purity (>95% enantiomeric excess (ee)) and modest yield (63%). Finally, de-protection occurred via acidic hydrolysis to obtain trans-(2S,6S)-teneraic acid. The stereochemistry of synthesized teneraic acid was confirmed as corresponding to trans-(2S,6S) by comparing its physical properties with those of a cis-meso-isomer and those of a trans-(2S,6S)-isomer that were reported in previous studies.
Collapse
|
10
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Soares da Costa TP, Desbois S, Dogovski C, Gorman MA, Ketaren NE, Paxman JJ, Siddiqui T, Zammit LM, Abbott BM, Robins-Browne RM, Parker MW, Jameson GB, Hall NE, Panjikar S, Perugini MA. Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target. Structure 2016; 24:1282-1291. [PMID: 27427481 DOI: 10.1016/j.str.2016.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Natalia E Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Tanzeela Siddiqui
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leanne M Zammit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Geoffrey B Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Nathan E Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
12
|
Gordon SE, Weber DK, Downton MT, Wagner J, Perugini MA. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation. PLoS Comput Biol 2016; 12:e1004811. [PMID: 26967332 PMCID: PMC4788353 DOI: 10.1371/journal.pcbi.1004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions. Interactions between proteins and ligands underpin many important biological processes, such as binding of substrates to their cognate enzymes in the process of catalysis. These interactions are complex, often requiring several intermediate steps to fully transition into the bound state. Here, we have used computational simulation to study binding of pyruvate to Dihydrodipicolinate synthase (DHDPS), an enzyme in the bacterial diaminopimelate pathway. In bacteria, such as the human pathogen S. aureus, DHDPS functions to make building blocks necessary for protein and bacterial cell wall biosyntheses. As the enzyme is absent in humans, yet essential for bacterial growth, DHDPS is a valid target for broad-range antibiotics. However, known DHDPS inhibitors show poor potency. One avenue that has not yet been taken into consideration for inhibitor design is the dynamics of DHDPS’s interaction with its reaction substrates (e.g. pyruvate). Using molecular dynamics simulation, we find that pyruvate binding to DHDPS must pass through a transition intermediate ‘hotspot’ in which the substrate is held in place by a dense network of noncovalent bonds. Given that many of the protein residues involved in this interaction are also shared by DHDPS from many pathogenic bacteria, this binding intermediate ‘hotspot’ may help in development of better broad-range DHDPS inhibitors.
Collapse
Affiliation(s)
- Shane E. Gordon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Daniel K. Weber
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew T. Downton
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - John Wagner
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
Skovpen YV, Conly CJT, Sanders DAR, Palmer DRJ. Biomimetic Design Results in a Potent Allosteric Inhibitor of Dihydrodipicolinate Synthase from Campylobacter jejuni. J Am Chem Soc 2016; 138:2014-20. [DOI: 10.1021/jacs.5b12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| |
Collapse
|
14
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
15
|
Oliver MR, Crowther JM, Leeman MM, Kessans SA, North RA, Donovan KA, Griffin MDW, Suzuki H, Hudson AO, Kasanmascheff M, Dobson RCJ. The purification, crystallization and preliminary X-ray diffraction analysis of two isoforms of meso-diaminopimelate decarboxylase from Arabidopsis thaliana. Acta Crystallogr F Struct Biol Commun 2014; 70:663-8. [PMID: 24817733 PMCID: PMC4014342 DOI: 10.1107/s2053230x14007699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
Diaminopimelate decarboxylase catalyses the last step in the diaminopimelate-biosynthetic pathway leading to S-lysine: the decarboxylation of meso-diaminopimelate to form S-lysine. Lysine biosynthesis occurs only in microorganisms and plants, and lysine is essential for the growth and development of animals. Thus, the diaminopimelate pathway represents an attractive target for antimicrobial and herbicide treatments and has received considerable attention from both a mechanistic and a structural viewpoint. Diaminopimelate decarboxylase has only been characterized in prokaryotic species. This communication describes the first structural studies of two diaminopimelate decarboxylase isoforms from a plant. The Arabidopsis thaliana diaminopimelate decarboxylase cDNAs At3g14390 (encoding DapDc1) and At5g11880 (encoding DapDc2) were cloned from genomic DNA and the recombinant proteins were expressed and purified from Escherichia coli Rosetta (DE3) cells. The crystals of DapDc1 and DapDc2 diffracted to beyond 2.00 and 2.27 Å resolution, respectively. Understanding the structural biology of diaminopimelate decarboxylase from a eukaryotic species will provide insights for the development of future herbicide treatments, in particular.
Collapse
Affiliation(s)
- Michael R. Oliver
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Jennifer M. Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Mary M. Leeman
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Katherine A. Donovan
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Müge Kasanmascheff
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Molecular docking and in silico studies on analogues of 2-methylheptyl isonicotinate with DHDPS enzyme of Mycobacterium tuberculosis. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0488-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Söderman SC, Schwan AL. Stereodivergent Access to Cis- and Trans-3,5-Disubstituted 1,4-Thiazane 1-Oxides by Cyclization of Homochiral β-Amino Sulfoxides and Sulfones. The Preparation of Isomeric Ant Venom Alkaloids. Org Lett 2013; 15:4434-7. [DOI: 10.1021/ol4023003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan C. Söderman
- Department of Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Adrian L. Schwan
- Department of Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
18
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Atkinson SC, Dogovski C, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1040-7. [PMID: 22949190 PMCID: PMC3433193 DOI: 10.1107/s1744309112033052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Singh SP, Bora TC, Bezbaruah RL. Molecular Interaction of Novel Compound 2-Methylheptyl Isonicotinate Produced by Streptomyces sp. 201 with Dihydrodipicolinate Synthase (DHDPS) Enzyme of Mycobacterium tuberculosis for its Antibacterial Activity. Indian J Microbiol 2012; 52:427-32. [PMID: 23997335 PMCID: PMC3460125 DOI: 10.1007/s12088-012-0252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/12/2012] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). Hence there is an urgent need for designing or developing a novel or potent anti-tubercular agent. The Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In our study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sp. 201 at three different binding site of dihydrodipicolinate synthase (DHDPS) enzyme of MTB. The molecular docking studies suggest that the novel molecule shows favourable interaction at the three different binding sites as compared to five experimentally known inhibitors of DHDPS.
Collapse
Affiliation(s)
- Salam Pradeep Singh
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - T. C. Bora
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - R. L. Bezbaruah
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| |
Collapse
|
21
|
Atkinson SC, Dogovski C, Newman J, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1537-41. [PMID: 22139160 PMCID: PMC3232133 DOI: 10.1107/s1744309111038395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V(M) = 2.55 Å(3) Da(-1), 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Janet Newman
- CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
22
|
Griffin MDW, Billakanti JM, Gerrard JA, Dobson RCJ, Pearce FG. Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1386-90. [PMID: 22102238 PMCID: PMC3212457 DOI: 10.1107/s1744309111033276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the first committed step of the lysine-biosynthetic pathway in plants and bacteria. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS2 from Arabidopsis thaliana are reported. Diffraction-quality protein crystals belonged to space group P2(1)2(1)2.
Collapse
Affiliation(s)
- Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
23
|
Dobson RCJ, Girón I, Hudson AO. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS One 2011; 6:e20439. [PMID: 21633707 PMCID: PMC3102117 DOI: 10.1371/journal.pone.0020439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022] Open
Abstract
In some bacterial species and photosynthetic cohorts, including algae, the enzyme
l,l-diaminopimelate aminotransferase
(DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid
L-lysine. DapL catalyzes the conversion of
tetrahydrodipicolinate (THDPA) to
l,l-diaminopimelate
(l,l-DAP), in one step bypassing the
DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here
we present an in vivo and in vitro
characterization of the DapL ortholog from the alga Chlamydomonas
reinhardtii (Cr-DapL). The in
vivo analysis illustrated that the enzyme is able to functionally
complement the E. coli dap auxotrophs and was essential for
plant development in Arabidopsis. In vitro, the enzyme was able
to inter-convert THDPA and l,l-DAP, showing
strong substrate specificity. Cr-DapL was dimeric in both
solution and when crystallized. The structure of Cr-DapL was
solved in its apo form, showing an overall architecture of a
α/β protein with each monomer in the dimer adopting a pyridoxal
phosphate-dependent transferase-like fold in a V-shaped conformation. The active
site comprises residues from both monomers in the dimer and shows some
rearrangement when compared to the apo-DapL structure from
Arabidopsis. Since animals do not possess the enzymatic machinery necessary for
the de novo synthesis of the amino acid
l-lysine, enzymes involved in this pathway are
attractive targets for the development of antibiotics, herbicides and
algaecides.
Collapse
Affiliation(s)
- Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science
and Biotechnology Institute, The University of Melbourne, Parkville, Victoria,
Australia
- Biomolecular Interaction Centre, School of Biological Sciences,
University of Canterbury, Christchurch, New Zealand
- * E-mail: (RCJD); (AOH)
| | - Irma Girón
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
| | - André O. Hudson
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
- * E-mail: (RCJD); (AOH)
| |
Collapse
|
24
|
LC–MS and NMR characterization of the purple chromophore formed in the o-aminobenzaldehyde assay of dihydrodipicolinate synthase. Bioorg Med Chem 2011; 19:1535-40. [DOI: 10.1016/j.bmc.2010.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/18/2022]
|
25
|
Derikvand Z, Talei GR, Aghabozorg H, Olmstead MM, Azadbakht A, Nemati A, Gharamaleki JA. Synthesis, Crystal Structure, Spectroscopic, Electrochemical and Antimicrobial Properties of Cu(II) Complex with the Mixed Ligands of 2,9-Dimethyl-1,10-phenanthroline and 4-Hydroxypyridine-2,6-dicarboxylic Acid. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Devenish SRA, Blunt JW, Gerrard JA. NMR studies uncover alternate substrates for dihydrodipicolinate synthase and suggest that dihydrodipicolinate reductase is also a dehydratase. J Med Chem 2010; 53:4808-12. [PMID: 20503968 DOI: 10.1021/jm100349s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite extensive effort, the drug target dihydrodipicolinate synthase (DHDPS) continues to evade effective inhibition. We used NMR spectroscopy to examine the substrate specificity of this enzyme and found that two pyruvate analogues previously classified as weak competitive inhibitors were turned over productively by DHDPS. Four other analogues were confirmed not to be substrates. Finally, our examination of the natural product of DHDPS and its degradation revealed that dihydrodipicolinate reductase (DHDPR) possesses previously unrecognized dehydratase activity.
Collapse
Affiliation(s)
- Sean R A Devenish
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | | | | |
Collapse
|
27
|
Garg A, Tewari R, Raghava GPS. Virtual Screening of potential drug-like inhibitors against Lysine/DAP pathway of Mycobacterium tuberculosis. BMC Bioinformatics 2010; 11 Suppl 1:S53. [PMID: 20122228 PMCID: PMC3009526 DOI: 10.1186/1471-2105-11-s1-s53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND An explosive global spreading of multidrug resistant Mycobacterium tuberculosis (Mtb) is a catastrophe, which demands an urgent need to design or develop novel/potent antitubercular agents. The Lysine/DAP biosynthetic pathway is a promising target due its specific role in cell wall and amino acid biosynthesis. Here, we report identification of potential antitubercular candidates targeting Mtb dihydrodipicolinate synthase (DHDPS) enzyme of the pathway using virtual screening protocols. RESULTS In the present study, we generated three sets of drug-like molecules in order to screen potential inhibitors against Mtb drug target DHDPS. The first set of compounds was a combinatorial library, which comprised analogues of pyruvate (substrate of DHDPS). The second set of compounds consisted of pyruvate-like molecules i.e. structurally similar to pyruvate, obtained using 3D flexible similarity search against NCI and PubChem database. The third set constituted 3847 anti-infective molecules obtained from PubChem. These compounds were subjected to Lipinski's rule of drug-like five filters. Finally, three sets of drug-like compounds i.e. 4088 pyruvate analogues, 2640 pyruvate-like molecules and 1750 anti-infective molecules were docked at the active site of Mtb DHDPS (PDB code: 1XXX used in the molecular docking calculations) to select inhibitors establishing favorable interactions. CONCLUSION The above-mentioned virtual screening procedures helped in the identification of several potent candidates that possess inhibitory activity against Mtb DHDPS. Therefore, these novel scaffolds/candidates which could have the potential to inhibit Mtb DHDPS enzyme would represent promising starting points as lead compounds and certainly aid the experimental designing of antituberculars in lesser time.
Collapse
Affiliation(s)
- Aarti Garg
- Bioinformatics Centre, Institute of Microbial Technology, Sector-39A, Chandigarh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rupinder Tewari
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gajendra PS Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
28
|
Devenish SRA, Gerrard JA, Jameson GB, Dobson RCJ. The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1092-5. [PMID: 19052357 PMCID: PMC2593713 DOI: 10.1107/s1744309108033654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/15/2008] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) mediates the key first reaction common to the biosynthesis of (S)-lysine and meso-diaminopimelate, molecules which play a crucial cross-linking role in bacterial cell walls. An effective inhibitor of DHDPS would represent a useful antibacterial agent; despite extensive effort, a suitable inhibitor has yet to be found. In an attempt to examine the specificity of the active site of DHDPS, the enzyme was cocrystallized with the substrate analogue oxaloacetate. The resulting crystals diffracted to 2.0 A resolution, but solution of the protein structure revealed that pyruvate was bound in the active site rather than oxaloacetic acid. Kinetic analysis confirmed that the decarboxylation of oxaloacetate was not catalysed by DHDPS and was instead a slow spontaneous chemical process.
Collapse
Affiliation(s)
- Sean R. A. Devenish
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Juliet A. Gerrard
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Dobson RCJ, Griffin MDW, Devenish SRA, Pearce FG, Hutton CA, Gerrard JA, Jameson GB, Perugini MA. Conserved main-chain peptide distortions: a proposed role for Ile203 in catalysis by dihydrodipicolinate synthase. Protein Sci 2008; 17:2080-90. [PMID: 18787203 DOI: 10.1110/ps.037440.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) has received considerable attention from a mechanistic and structural viewpoint. DHDPS catalyzes the reaction of (S)-aspartate-beta-semialdehyde with pyruvate, which is bound via a Schiff base to a conserved active-site lysine (Lys161 in the enzyme from Escherichia coli). To probe the mechanism of DHDPS, we have studied the inhibition of E. coli DHDPS by the substrate analog, beta-hydroxypyruvate. The K (i) was determined to be 0.21 (+/-0.02) mM, similar to that of the allosteric inhibitor, (S)-lysine, and beta-hydroxypyruvate was observed to cause time-dependent inhibition. The inhibitory reaction with beta-hydroxypyruvate could be qualitatively followed by mass spectrometry, which showed initial noncovalent adduct formation, followed by the slow formation of the covalent adduct. It is unclear whether beta-hydroxypyruvate plays a role in regulating the biosynthesis of meso-diaminopimelate and (S)-lysine in E. coli, although we note that it is present in vivo. The crystal structure of DHDPS complexed with beta-hydroxypyruvate was solved. The active site clearly showed the presence of the inhibitor covalently bound to the Lys161. Interestingly, the hydroxyl group of beta-hydroxypyruvate was hydrogen-bonded to the main-chain carbonyl of Ile203. This provides insight into the possible catalytic role played by this peptide unit, which has a highly strained torsion angle (omega approximately 201 degrees ). A survey of the known DHDPS structures from other organisms shows this distortion to be a highly conserved feature of the DHDPS active site, and we propose that this peptide unit plays a critical role in catalysis.
Collapse
Affiliation(s)
- Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Girish TS, Sharma E, Gopal B. Structural and functional characterization ofStaphylococcus aureusdihydrodipicolinate synthase. FEBS Lett 2008; 582:2923-30. [DOI: 10.1016/j.febslet.2008.07.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/16/2022]
|
31
|
Phenix CP, Palmer DRJ. Isothermal Titration Microcalorimetry Reveals the Cooperative and Noncompetitive Nature of Inhibition of Sinorhizobium meliloti L5-30 Dihydrodipicolinate Synthase by (S)-Lysine. Biochemistry 2008; 47:7779-81. [DOI: 10.1021/bi800629n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher P. Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| |
Collapse
|
32
|
Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 2008; 411:351-60. [PMID: 18062777 DOI: 10.1042/bj20071360] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by analytical ultracentrifugation studies, which show the enzyme to be tetrameric in solution. The structure of each subunit consists of an N-terminal (beta/alpha)(8)-barrel followed by a C-terminal alpha-helical domain. The active site comprises residues from two adjacent subunits, across an interface, and is located at the C-terminal side of the (beta/alpha)(8)-barrel domain. A comparison with the other known DHDPS structures shows that the overall architecture of the active site is largely conserved, albeit the proton relay motif comprising Tyr(143), Thr(54) and Tyr(117) appears to be disrupted. The kinetic parameters of the enzyme are reported: K(M)(ASA)=0.43+/-0.02 mM, K(M)(pyruvate)=0.17+/-0.01 mM and V(max)=4.42+/-0.08 micromol x s(-1) x mg(-1). Interestingly, the V(max) of Mtb-DHDPS is 6-fold higher than the corresponding value for Escherichia coli DHDPS, and the enzyme is insensitive to feedback inhibition by (S)-lysine. This can be explained by the three-dimensional structure, which shows that the (S)-lysine-binding site is not conserved in Mtb-DHDPS, when compared with DHDPS enzymes that are known to be inhibited by (S)-lysine. A selection of metabolites from the aspartate family of amino acids do not inhibit this enzyme. A comprehensive understanding of the structure and function of this important enzyme from the (S)-lysine biosynthesis pathway may provide the key for the design of new antibiotics to combat tuberculosis.
Collapse
|