1
|
Fathoni I, Ho TCS, Chan AHY, Leeper FJ, Matuschewski K, Saliba KJ. Identification and characterization of thiamine analogs with antiplasmodial activity. Antimicrob Agents Chemother 2024:e0109624. [PMID: 39470204 DOI: 10.1128/aac.01096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
Thiamine is metabolized into thiamine pyrophosphate (TPP), an essential enzyme cofactor. Previous work has shown that oxythiamine, a thiamine analog, is metabolized by thiamine pyrophosphokinase (TPK) into oxythiamine pyrophosphate within the malaria parasite Plasmodium falciparum and then inhibits TPP-dependent enzymes, killing the parasite in vitro and in vivo. To identify a more potent antiplasmodial thiamine analog, 11 commercially available compounds were tested against P. falciparum and P. knowlesi. Five active compounds were identified, but only N3-pyridyl thiamine (N3PT), a potent transketolase inhibitor and candidate anticancer lead compound, was found to suppress P. falciparum proliferation with an IC50 value 10-fold lower than that of oxythiamine. N3PT was active against P. knowlesi and was >17 times less toxic to human fibroblasts, as compared to oxythiamine. Increasing the extracellular thiamine concentration reduced the antiplasmodial activity of N3PT, consistent with N3PT competing with thiamine/TPP. A transgenic P. falciparum line overexpressing TPK was found to be hypersensitized to N3PT. Docking studies showed an almost identical binding mode in TPK between thiamine and N3PT. Furthermore, we show that [3H]thiamine accumulation, resulting from a combination of transport and metabolism, in isolated parasites is reduced by N3PT. Treatment of P. berghei-infected mice with 200 mg/kg/day N3PT reduced their parasitemia, prolonged their time to malaria symptoms, and appeared to be non-toxic to mice. Collectively, our studies are consistent with N3PT competing with thiamine for TPK binding and inhibiting parasite proliferation by reducing TPP production, and/or being converted into a TPP antimetabolite that inhibits TPP-dependent enzymes.
Collapse
Affiliation(s)
- Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Ho TS, Chan AHY, Leeper FJ. Triazole-Based Thiamine Analogues as Inhibitors of Thiamine Pyrophosphate-Dependent Enzymes: 1,3-Dicarboxylate for Metal Binding. ACS OMEGA 2024; 9:42245-42252. [PMID: 39431096 PMCID: PMC11483378 DOI: 10.1021/acsomega.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Thiamine 1 (vitamin B1) is essential for energy metabolism, and interruption of its utilization pathways is linked to various disease states. Thiamine pyrophosphate 2a (TPP, the bioactive form of 1) functions as a coenzyme of a variety of enzymes. To understand the role of vitamin B1 in these diseases, a chemical approach is to use coenzyme analogues to compete with TPP for the enzyme active site, which abolishes the coenzyme function. Exemplified by oxythiamine 3a and triazole hydroxamate 4, chemical probes require the coenzyme analogues to be membrane-permeable and of broad inhibitory activity to the enzyme family (rather than being too selective to particular TPP-dependent enzymes). In this study, using biochemical assays, we show that changing the hydroxamate metal-binding group of 4 to a 1,3-dicarboxylate moiety leads to the potent inhibition of multiple TPP-dependent enzymes. We further demonstrate that this dianionic thiamine analogue when masked in its diester form becomes membrane-permeable and can be unmasked by esterase treatment. Taken together, our inhibitors are potentially useful chemical tools to study the roles of vitamin B1, using a prodrug mechanism, to induce the effects of thiamine deficiency in cell-based assays.
Collapse
Affiliation(s)
| | | | - Finian J. Leeper
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Malinowska M, Czerniecka M, Jastrzebska I, Ratkiewicz A, Tylicki A, Wawrusiewicz-Kurylonek N. In Vitro and In Silico Studies on Cytotoxic Properties of Oxythiamine and 2'-Methylthiamine. Int J Mol Sci 2024; 25:4359. [PMID: 38673944 PMCID: PMC11050282 DOI: 10.3390/ijms25084359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2'-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2'-methylthiamine has not been studied. We have come forward with a simplified method of synthesis using commercially available substrates and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found to inhibit the growth and metabolism of cancer cells significantly better than 2'-methylthiamine (GI50 36 and 107 µM, respectively), while 2'-methylthiamine is more selective for cancer cells than oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2'-methylthiamine (ΔG -8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine (ΔG -7.5 kcal/mol ) and oxythiamine (ΔG -7.0 kcal/mol), which includes 2'-methylthiamine as a potential cytostatic. Our results suggest that the limited effect of 2'-methylthiamine on HeLa arises from the related arduous transport as compared to oxythiamine. Given that 2'-methylthiamine may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential cytostatic. Thus, research should be carried out in order to find the best way to improve the transport of 2'-methylthiamine into cells, which may trigger its cytostatic properties.
Collapse
Affiliation(s)
- Marta Malinowska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (M.M.); (I.J.)
| | - Magdalena Czerniecka
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
- Laboratory of Tissue Culture, Department of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Izabella Jastrzebska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (M.M.); (I.J.)
| | - Artur Ratkiewicz
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (M.M.); (I.J.)
| | - Adam Tylicki
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
4
|
Ding H, Teng Y, Gao P, Zhang Q, Wang M, Yu Y, Fan Y, Zhu L. Construction of a prognostic model for lung adenocarcinoma based on m6A/m5C/m1A genes. Hum Mol Genet 2024; 33:563-582. [PMID: 38142284 DOI: 10.1093/hmg/ddad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Developing a prognostic model for lung adenocarcinoma (LUAD) that utilizes m6A/m5C/m1A genes holds immense importance in providing precise prognosis predictions for individuals. METHODS This study mined m6A/m5C/m1A-related differential genes in LUAD based on public databases, identified LUAD tumor subtypes based on these genes, and further built a risk prognostic model grounded in differential genes between subtypes. The immune status between high- and low-risk groups was investigated, and the distribution of feature genes in tumor immune cells was analyzed using single-cell analysis. Based on the expression levels of feature genes, a projection of chemotherapeutic and targeted drugs was made for individuals identified as high-risk. Ultimately, cell experiments were further verified. RESULTS The 6-gene risk prognosis model based on differential genes between tumor subtypes had good predictive performance. Individuals classified as low-risk exhibited a higher (P < 0.05) abundance of infiltrating immune cells. Feature genes were mainly distributed in tumor immune cells like CD4+T cells, CD8+T cells, and regulatory T cells. Four drugs with relatively low IC50 values were found in the high-risk group: Elesclomol, Pyrimethamine, Saracatinib, and Temsirolimus. In addition, four drugs with significant positive correlation (P < 0.001) between IC50 values and feature gene expression were found, including Alectinib, Estramustine, Brigatinib, and Elesclomol. The low expression of key gene NTSR1 reduced the IC50 value of irinotecan. CONCLUSION Based on the m6A/m5C/m1A-related genes in LUAD, LUAD patients were divided into 2 subtypes, and a m6A/m5C/m1A-related LUAD prognostic model was constructed to provide a reference for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yuanyuan Teng
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Ping Gao
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Qi Zhang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Mengdi Wang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yi Yu
- Department of General Practice, Jiankang Road Community Health Service Center, NO. 239 Zhongshan East Road, Jingkou District, Zhenjiang City, Jiangsu Province 212008, China
| | - Yueping Fan
- Department of Respiratory, Jurong Branch Hospital, Affiliated Hospital of Jiangsu University, NO. 8 Huayang South Road, Jurong City, Zhenjiang City, Jiangsu Province 212400, China
| | - Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| |
Collapse
|
5
|
Chan AHY, Ho TCS, Leeper FJ. Open-chain thiamine analogues as potent inhibitors of thiamine pyrophosphate (TPP)-dependent enzymes. Org Biomol Chem 2023; 21:6531-6536. [PMID: 37522836 DOI: 10.1039/d3ob00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A common approach to studying thiamine pyrophosphate (TPP)-dependent enzymes is by chemical inhibition with thiamine/TPP analogues which feature a neutral aromatic ring in place of the positive thiazolium ring of TPP. These are potent inhibitors but their preparation generally involves multiple synthetic steps to construct the central ring. We report efficient syntheses of novel, open-chain thiamine analogues which potently inhibit TPP-dependent enzymes and are predicted to share the same binding mode as TPP. We also report some open-chain analogues that inhibit pyruvate dehydrogenase E1-subunit (PDH E1) and are predicted to occupy additional pockets in the enzyme other than the TPP-binding pockets. This opens up new possibilities for increasing the affinity and selectivity of the analogues for PDH, which is an established anti-cancer target.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
6
|
Chan AH, Ho TCS, Fathoni I, Pope R, Saliba KJ, Leeper FJ. Inhibition of Thiamine Diphosphate-Dependent Enzymes by Triazole-Based Thiamine Analogues. ACS Med Chem Lett 2023; 14:621-628. [PMID: 37197459 PMCID: PMC10184313 DOI: 10.1021/acsmedchemlett.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Thiamine is metabolized into the coenzyme thiamine diphosphate (ThDP). Interrupting thiamine utilization leads to disease states. Oxythiamine, a thiamine analogue, is metabolized into oxythiamine diphosphate (OxThDP), which inhibits ThDP-dependent enzymes. Oxythiamine has been used to validate thiamine utilization as an anti-malarial drug target. However, high oxythiamine doses are needed in vivo because of its rapid clearance, and its potency decreases dramatically with thiamine levels. We report herein cell-permeable thiamine analogues possessing a triazole ring and a hydroxamate tail replacing the thiazolium ring and diphosphate groups of ThDP. We characterize their broad-spectrum competitive inhibition of ThDP-dependent enzymes and of Plasmodium falciparum proliferation. We demonstrate how the cellular thiamine-utilization pathway can be probed by using our compounds and oxythiamine in parallel.
Collapse
Affiliation(s)
- Alex H.
Y. Chan
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Terence C. S. Ho
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Imam Fathoni
- Research
School of Biology, The Australian National
University, Canberra, ACT 2601, Australia
| | - Rebecca Pope
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kevin J. Saliba
- Research
School of Biology, The Australian National
University, Canberra, ACT 2601, Australia
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Huo L, Li X, Zhao Y, Li L, Chu L. Site- and Stereoselective Synthesis of Alkenyl Chlorides by Dual Functionalization of Internal Alkynes via Photoredox/Nickel Catalysis. J Am Chem Soc 2023; 145:9876-9885. [PMID: 37072001 DOI: 10.1021/jacs.3c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Herein, we report a redox-neutral and atom-economical protocol to synthesize valuable alkenyl chlorides from unactivated internal alkynes and abundant organochlorides via photoredox and nickel catalysis. This protocol enables the site- and stereoselective addition of organochlorides to alkynes via chlorine photoelimination-initiated sequential hydrochlorination/remote C-H functionalization. The protocol is compatible with a wide range of medicinally relevant heteroaryl, aryl, acid, and alkyl chlorides for efficiently producing γ-functionalized alkenyl chlorides, exhibiting excellent regioselectivities and stereoselectivities. Late-stage modifications and synthetic manipulations of the products and preliminary mechanistic studies are also presented.
Collapse
Affiliation(s)
- Liping Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Xiaofang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yaheng Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Ling Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Bai L, Zhu HL. A dose- and time-dependent effect of oxythiamine on cell growth inhibition in non-small cell lung cancer. Cogn Neurodyn 2021; 16:633-641. [PMID: 35603057 PMCID: PMC9120279 DOI: 10.1007/s11571-021-09725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
AbstractThe high mortality rate of non-small-cell lung cancer (NSCLC) is mostly due to the high risk of recurrence. A comprehensive understanding of proliferation mechanisms of NSCLC would remarkably contribute to blocking up the invasion and metastasis of tumor cells. In our previous study, the remarkable decreased activity of Thiamine-dependent enzymes (TDEs), involving in intermediary metabolism responsible for energy production of tumor, was found under conditions of thiamine deficiency in vivo. To explore the effect of Oxythiamine (OT), a TDEs antimetabolite, on cell growth, we co-cultured A549 cells with OT in vitro at various doses (0.1, 1, 10 and 100 μM) and time periods (6, 12, 24 and 48 h) and subsequent cell proliferation and apoptosis assays were performed respectively. Our findings demonstrated that A549 cells proliferation was significantly downregulated by OT treatment in a progressively dose as well as time dependent manner. Inhibition of TDEs resulted in antagonism of lung cancer growth by inducing cells to cease the cycle as well as apoptotic cell death. We concluded a critical role of OT, a TDEs antagonistic compound, indicating the potential target of its practical use.
Collapse
Affiliation(s)
- Lin Bai
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, 221 West Yan’an Road, Shanghai, 200040 China
| | - Hui-li Zhu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, 221 West Yan’an Road, Shanghai, 200040 China
| |
Collapse
|
9
|
Jiang M, Liu M, Yu C, Cheng D, Chen F. Fully Continuous Flow Synthesis of 3-Chloro-4-oxopentyl Acetate: An Important Intermediate for Vitamin B1. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meifen Jiang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Chao Yu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Dang Cheng
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Synthesis and biological evaluation of pyrazolo[3,4-b]pyridine-3-yl pyrimidine derivatives as sGC stimulators for the treatment of pulmonary hypertension. Eur J Med Chem 2019; 173:107-116. [PMID: 30995566 DOI: 10.1016/j.ejmech.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
A series of new pyrazolo[3,4-b]pyridin-3-yl pyrimidine derivatives were synthesized and evaluated for the activation of sGC. Compared with riociguat, compound 13a exhibited equivalent in vitro activity on preconstricted rat thoracic aorta rings and in Rat heart Langendorff preparation. Compound 13a also showed acceptable PK profiles, which might become a promising candidate for the treatment of pulmonary hypertension.
Collapse
|
11
|
Cyclohexyl amide-based novel bacterial topoisomerase inhibitors with prospective GyrA-binding fragments. Future Med Chem 2019; 11:935-945. [PMID: 31140866 DOI: 10.4155/fmc-2018-0472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of bacterial topoisomerase II inhibitors that are gaining more and more importance mainly because of their excellent antibacterial activity, as well as their lack of cross-resistance to quinolones. Results: Described here is the synthesis and biological evaluation of a tiny series of new virtually assembled NBTIs containing synthetically feasible right-hand side fragments capable of binding the GyrA subunit of the bacterial DNA gyrase-DNA complex. Conclusion: NBTI variants with incorporated 1-phenylpyrazole right-hand side moiety show suitable antibacterial activity against Gram-positive Staphylococcus aureus, with confirmed selectivity over the human topoisomerase IIα enzyme.
Collapse
|
12
|
Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner. Oncotarget 2018; 7:26400-21. [PMID: 27027236 PMCID: PMC5041988 DOI: 10.18632/oncotarget.8387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
Abstract
2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.
Collapse
|
13
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
14
|
van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab 2016; 4:14. [PMID: 27418963 PMCID: PMC4944519 DOI: 10.1186/s40170-016-0154-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA ; Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ; Department of Internal Medicine, OLVG; Jan van Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - David J Panka
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Andrew K Geissler
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
15
|
Jayachandran A, Lo PH, Chueh AC, Prithviraj P, Molania R, Davalos-Salas M, Anaka M, Walkiewicz M, Cebon J, Behren A. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. BMC Cancer 2016; 16:134. [PMID: 26907172 PMCID: PMC4763451 DOI: 10.1186/s12885-016-2185-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 02/16/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The metabolism of cancer cells is often reprogrammed by dysregulation of metabolic enzymes. Transketolase-like 1 (TKTL1) is a homodimeric transketolase linking the pentose-phosphate pathway with the glycolytic pathway. It is generally silenced at a transcriptional level in somatic tissues. However, in human cancers its expression is associated with the acquisition of a glycolytic phenotype (the Warburg effect) by cancer cells that contributes to the progression of malignant tumors. In melanoma, defective promoter methylation results in the expression of genes and their products that can affect the tumor cell's phenotype including the modification of immune and functional characteristics. The present study evaluates the role of TKTL1 as a mediator of disease progression in melanoma associated with a defective methylation phenotype. METHODS The expression of TKTL1 in metastatic melanoma tumors and cell lines was analysed by qRT-PCR and immunohistochemistry. The promoter methylation status of TKTL1 in melanoma cells was evaluated by quantitative methylation specific PCR. Using qRT-PCR, the effect of a DNA demethylating agent 5-aza-2'-deoxycytidine (5aza) on the expression of TKTL1 was examined. Biochemical and molecular analyses such as glucose consumption, lactate production, invasion, proliferation and cell cycle progression together with ectopic expression and siRNA mediated knockdown were used to investigate the role of TKTL1 in melanoma cells. RESULTS Expression of TKTL1 was highly restricted in normal adult tissues and was overexpressed in a subset of metastatic melanoma tumors and derived cell lines. The TKTL1 promoter was activated by hypomethylation and treatment with 5aza induced TKTL1 expression in melanoma cells. Augmented expression of TKTL1 in melanoma cells was associated with a glycolytic phenotype. Loss and gain of function studies revealed that TKTL1 contributed to enhanced invasion of melanoma cells. CONCLUSIONS Our data provide evidence for an important role of TKTL1 in aerobic glycolysis and tumor promotion in melanoma that may result from defective promoter methylation. This epigenetic change may enable the natural selection of tumor cells with a metabolic phenotype and thereby provide a potential therapeutic target for a subset of melanoma tumors with elevated TKTL1 expression.
Collapse
Affiliation(s)
- Aparna Jayachandran
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.,School of Cancer Medicine, Latrobe University, Melbourne, VIC, 3086, Australia.,School of Medicine and the Gallipoli Medical Research Foundation, The University of Queensland, Brisbane, QLD 4120, Australia
| | - Pu-Han Lo
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia
| | - Anderly C Chueh
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Prashanth Prithviraj
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ramyar Molania
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Mercedes Davalos-Salas
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marzena Walkiewicz
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.,School of Cancer Medicine, Latrobe University, Melbourne, VIC, 3086, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, VIC, 3084, Australia. .,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia. .,School of Cancer Medicine, Latrobe University, Melbourne, VIC, 3086, Australia. .,Cancer Immuno-biology Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer and Wellness Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
16
|
Lv J, Wang J, Chang S, Liu M, Pang X. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim Biophys Sin (Shanghai) 2016; 48:17-26. [PMID: 26487443 DOI: 10.1093/abbs/gmv102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
RAS oncogene mutations are frequently detected in human cancers. Among RAS-mediated tumorigenesis, KRAS-driven cancers are the most frequently diagnosed and resistant to current therapies. Despite more than three decades of intensive efforts, there are still no specific therapies for mutant RAS proteins. While trying to block those well-established downstream pathways, such as the RAF-MAPK pathway and the PI3K-AKT pathway, attentions have been paid to potential effects of RAS on metabolic pathways and the feasibility for targeting these pathways. Recent studies have proved that RAS not only promotes aerobic glycolysis and glutamine metabolism reprograming to provide energy, but it also facilitates branched metabolism pathways, autophagy, and macropinocytosis. These alterations generate building blocks for tumor growth and strengthen antioxidant defense in tumor cells. All of these metabolic changes meet different demands of RAS-driven cancers, making them distinct from normal cells. Indeed, some achievements have been made to inhibit tumor growth through targeting specific metabolism rewiring in preclinical models. Although there is still a long way to elucidate the landscape of altered metabolism, we believe that specific metabolic enzymes or pathways could be therapeutically targeted for selective inhibition of RAS-driven cancers.
Collapse
Affiliation(s)
- Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siyu Chang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Synthesis of 2-(4-methyl-1,3-thiazol-5-yl)ethyl esters of acridone carboxylic acids and evaluation of their antibacterial activity. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0564-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma. Oncoscience 2015; 2:151-86. [PMID: 25859558 PMCID: PMC4381708 DOI: 10.18632/oncoscience.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have been identified that could serve as valid targets for anti-cancer pharmaceutical agents. Genes that are highly over-expressed include ENO2, HK2, PFKP, SLC2A3, PDK1, and SLC16A1. Genes that are highly under-expressed include ALDOB, PKLR, PFKFB2, G6PC, PCK1, FBP1, PC, and SUCLG1.
Collapse
|
19
|
An efficient amperometric transketolase assay: Towards inhibitor screening. Biosens Bioelectron 2014; 62:90-6. [DOI: 10.1016/j.bios.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/16/2014] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
|
20
|
Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells. PLoS One 2014; 9:e85702. [PMID: 24454921 PMCID: PMC3893258 DOI: 10.1371/journal.pone.0085702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Thiamine-dependent enzymes (TDEs) control metabolic pathways that are frequently altered in cancer and therefore present cancer-relevant targets. We have previously shown that the recombinant enzyme thiaminase cleaves and depletes intracellular thiamine, has growth inhibitory activity against leukemia and breast cancer cell lines, and that its growth inhibitory effects were reversed in leukemia cell lines by rapamycin. Now, we first show further evidence of thiaminase therapeutic potential by demonstrating its activity against breast and leukemia xenografts, and against a primary leukemia xenograft. We therefore further explored the metabolic effects of thiaminase in combination with rapamycin in leukemia and breast cell lines. Thiaminase decreased oxygen consumption rate and increased extracellular acidification rate, consistent with the inhibitory effect of acute thiamine depletion on the activity of the TDEs pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes; these effects were reversed by rapamycin. Metabolomic studies demonstrated intracellular thiamine depletion and the presence of the thiazole cleavage product in thiaminase-treated cells, providing validation of the experimental procedures. Accumulation of ribose and ribulose in both cell lines support the thiaminase-mediated suppression of the TDE transketolase. Interestingly, thiaminase suppression of another TDE, branched chain amino ketoacid dehydrogenase (BCKDH), showed very different patterns in the two cell lines: in RS4 leukemia cells it led to an increase in BCKDH substrates, and in MCF-7 breast cancer cells it led to a decrease in BCKDH products. Immunoblot analyses showed corresponding differences in expression of BCKDH pathway enzymes, and partial protection of thiaminase growth inhibition by gabapentin indicated that BCKDH inhibition may be a mechanism of thiaminase-mediated toxicity. Surprisingly, most of thiaminase-mediated metabolomic effects were also reversed by rapamycin. Thus, these studies demonstrate that acute intracellular thiamine depletion by recombinant thiaminase results in metabolic changes in thiamine-dependent metabolism, and demonstrate a previously unrecognized role of mTOR signaling in the regulation of thiamine-dependent metabolism.
Collapse
|
21
|
Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 2013; 4:2060. [PMID: 23804074 DOI: 10.1038/ncomms3060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022] Open
Abstract
Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
Collapse
|
22
|
Vallerini GP, Amori L, Beato C, Tararina M, Wang XD, Schwarcz R, Costantino G. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. J Med Chem 2013; 56:9482-95. [PMID: 24274468 DOI: 10.1021/jm401249c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3-HAO) is the enzyme responsible for the production of the neurotoxic tryptophan metabolite quinolinic acid (QUIN). Elevated brain levels of QUIN are observed in several neurodegenerative diseases, but pharmacological investigation on its role in the pathogenesis of these conditions is difficult because only one class of substrate-analogue 3-HAO inhibitors, with poor chemical stability, has been reported so far. Here we describe the design, synthesis, and biological evaluation of a novel class of chemically stable inhibitors based on the 2-aminonicotinic acid 1-oxide nucleus. After the preliminary in vitro evaluation of newly synthesized compounds using brain tissue homogenate, we selected the most active inhibitor and showed its ability to acutely reduce the production of QUIN in the rat brain in vivo. These findings provide a novel pharmacological tool for the study of the mechanisms underlying the onset and propagation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gian Paolo Vallerini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Bunik VI, Tylicki A, Lukashev NV. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 2013; 280:6412-42. [PMID: 24004353 DOI: 10.1111/febs.12512] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
24
|
Kandalkar SR, Kaduskar RD, Ramaiah PA, Barawkar DA, Bhuniya D, Deshpande AM. Highly efficient one-pot amination of carboxylate-substituted nitrogen-containing heteroaryl chlorides via Staudinger reaction. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Bach P, Marczynke M, Giordanetto F. Effects of the Pyridine 3-Substituent on Regioselectivity in the Nucleophilic Aromatic Substitution Reaction of 3-Substituted 2,6-Dichloropyridines with 1-Methylpiperazine Studied by a Chemical Design Strategy. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Schneider S, Lüdtke S, Schröder-Tittmann K, Wechsler C, Meyer D, Tittmann K. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity. PLoS One 2012; 7:e48321. [PMID: 23118983 PMCID: PMC3485151 DOI: 10.1371/journal.pone.0048321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Besides transketolase (TKT), a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1) has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a “pseudo-TKTL1” Δ38 deletion variant of human TKT (TKTΔ38) as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.
Collapse
Affiliation(s)
- Stefan Schneider
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
| | - Stefan Lüdtke
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
| | - Kathrin Schröder-Tittmann
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
| | - Cindy Wechsler
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
| | - Danilo Meyer
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
| | - Kai Tittmann
- Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, Germany
- * E-mail:
| |
Collapse
|
27
|
McConnell AJ, Lim MH, Olmon ED, Song H, Dervan EE, Barton JK. Luminescent properties of ruthenium(II) complexes with sterically expansive ligands bound to DNA defects. Inorg Chem 2012; 51:12511-20. [PMID: 23113594 DOI: 10.1021/ic3019524] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new family of ruthenium(II) complexes with sterically expansive ligands for targeting DNA defects was prepared, and their luminescent responses to base pair mismatches and/or abasic sites were investigated. Design of the complexes sought to combine the mismatch specificity of sterically expansive metalloinsertors, such as [Rh(bpy)2(chrysi)](3+) (chrysi = chrysene-5,6-quinone diimine), and the light switch behavior of [Ru(bpy)2(dppz)](2+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine). In one approach, complexes bearing analogues of chrysi incorporating hydrogen-bonding functionality similar to dppz were synthesized. While the complexes show luminescence only at low temperatures (77 K), competition experiments with [Ru(bpy)2(dppz)](2+) at ambient temperatures reveal that the chrysi derivatives preferentially bind DNA mismatches. In another approach, various substituents were introduced onto the dppz ligand to increase its steric bulk for mismatch binding while maintaining planarity. Steady state luminescence and luminescence lifetime measurements reveal that these dppz derivative complexes behave as DNA "light switches" but that the selectivity in binding and luminescence with mismatched/abasic versus well-matched DNA is not high. In all cases, luminescence depends sensitively upon structural perturbations to the dppz ligand.
Collapse
Affiliation(s)
- Anna J McConnell
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | | | | | | | | | | |
Collapse
|
28
|
Patel SK, Gajbhiye V, Jain NK. Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J Drug Target 2012; 20:841-9. [DOI: 10.3109/1061186x.2012.719231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Abate C, Ferorelli S, Niso M, Lovicario C, Infantino V, Convertini P, Perrone R, Berardi F. 2-Aminopyridine Derivatives as Potential σ2Receptor Antagonists. ChemMedChem 2012; 7:1847-57. [DOI: 10.1002/cmdc.201200246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/20/2012] [Indexed: 11/06/2022]
|
30
|
Obiol-Pardo C, Alcarraz-Vizán G, Cascante M, Rubio-Martinez J. Diphenyl urea derivatives as inhibitors of transketolase: a structure-based virtual screening. PLoS One 2012; 7:e32276. [PMID: 22403640 PMCID: PMC3293897 DOI: 10.1371/journal.pone.0032276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022] Open
Abstract
Transketolase is an enzyme involved in a critical step of the non-oxidative branch of the pentose phosphate pathway whose inhibition could lead to new anticancer drugs. Here, we report new human transketolase inhibitors, based on the phenyl urea scaffold, found by applying structure-based virtual screening. These inhibitors are designed to cover a hot spot in the dimerization interface of the homodimer of the enzyme, providing for the first time compounds with a suggested novel binding mode not based on mimicking the thiamine pyrophosphate cofactor.
Collapse
Affiliation(s)
- Cristian Obiol-Pardo
- Departamento de Química Física, Facultat de Química, Universitat de Barcelona and Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
| | - Gema Alcarraz-Vizán
- Departamento de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine at Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marta Cascante
- Departamento de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine at Universitat de Barcelona (IBUB), Barcelona, Spain
- * E-mail: (MC); (JRM)
| | - Jaime Rubio-Martinez
- Departamento de Química Física, Facultat de Química, Universitat de Barcelona and Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
- * E-mail: (MC); (JRM)
| |
Collapse
|
31
|
Tylicki A, Siemieniuk M, Dobrzyn P, Ziolkowska G, Nowik M, Czyzewska U, Pyrkowska A. Fatty acid profile and influence of oxythiamine on fatty acid content in Malassezia pachydermatis, Candida albicans and Saccharomyces cerevisiae. Mycoses 2011; 55:e106-13. [PMID: 22066764 DOI: 10.1111/j.1439-0507.2011.02152.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malassezia pachydermatis and Candida albicans are fungi involved in the skin diseases and systemic infections. The therapy of such infections is difficult due to relapses and problems with pathogen identification. In our study, we compare the fatty acids profile of M. pachydermatis, C. albicans and S. cerevisiae to identify diagnostic markers and to investigate the effect of oxythiamine (OT) on the lipid composition of these species. Total fatty acid content is threefold higher in C. albicans and M. pachydermatis compared with S. cerevisiae. These two species have also increased level of polyunsaturated fatty acids (PUFA) and decreased content of monounsaturated fatty acids (MUFA). We noted differences in the content of longer chain (>18) fatty acids between studied species (for example a lack of 20 : 1 in S. cerevisiae and 22 : 0 in M. pachydermatis and C. albicans). OT reduces total fatty acids content in M. pachydermatis by 50%. In S. cerevisiae, OT increased PUFA whereas it decreased MUFA content. In C. albicans, OT decreased PUFA and increased MUFA and SFA content. The results show that the MUFA to PUFA ratio and the fatty acid profile could be useful diagnostic tests to distinguish C. albicans, M. pachydermatis and S. cerevisiae, and OT affected the lipid metabolism of the investigated species, especially M. pachydermatis.
Collapse
Affiliation(s)
- Adam Tylicki
- Departament of Cytobiochemistry, Institute of Biology, University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dang CV, Hamaker M, Sun P, Le A, Gao P. Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl) 2011; 89:205-12. [PMID: 21301795 DOI: 10.1007/s00109-011-0730-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 12/12/2022]
Abstract
In 1927, Otto Warburg and coworkers reported the increased uptake of glucose and production of lactate by tumors in vivo as compared with normal tissues. This phenomenon, now known as the Warburg effect, was recapitulated in vitro with cancer tissue slices exhibiting excessive lactate production even with adequate oxygen. Warburg's in vivo studies of tumors further suggest that the dependency of tumors in vivo on glucose could be exploited for therapy, because reduction of arterial glucose by half resulted in a four-fold reduction in tumor fermentation. Recent work in cancer metabolism indicates that the Warburg effect or aerobic glycolysis contributes to redox balance and lipid synthesis, but glycolysis is insufficient to sustain a growing and dividing cancer cell. In this regard, glutamine, which contributes its carbons to the tricarboxylic acid (TCA) cycle, has been re-discovered as an essential bioenergetic and anabolic substrate for many cancer cell types. Could alterations in cancer metabolism be exploited for therapy? Here, we address this question by reviewing current concepts of normal metabolism and altered metabolism in cancer cells with specific emphasis on molecular targets involved directly in glycolysis or glutamine metabolism.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21212, USA.
| | | | | | | | | |
Collapse
|
33
|
Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem 2010; 285:31559-70. [PMID: 20667822 PMCID: PMC2951230 DOI: 10.1074/jbc.m110.149955] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/14/2010] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of human transketolase (TKT), a thiamine diphosphate (ThDP) and Ca(2+)-dependent enzyme that catalyzes the interketol transfer between ketoses and aldoses as part of the pentose phosphate pathway, has been determined to 1.75 Å resolution. The recombinantly produced protein crystallized in space group C2 containing one monomer in the asymmetric unit. Two monomers form the homodimeric biological assembly with two identical active sites at the dimer interface. Although the protomer exhibits the typical three (α/β)-domain structure and topology reported for TKTs from other species, structural differences are observed for several loop regions and the linker that connects the PP and Pyr domain. The cofactor and substrate binding sites of human TKT bear high resemblance to those of other TKTs but also feature unique properties, including two lysines and a serine that interact with the β-phosphate of ThDP. Furthermore, Gln(189) spans over the thiazolium moiety of ThDP and replaces an isoleucine found in most non-mammalian TKTs. The side chain of Gln(428) forms a hydrogen bond with the 4'-amino group of ThDP and replaces a histidine that is invariant in all non-mammalian TKTs. All other amino acids involved in substrate binding and catalysis are strictly conserved. Besides a steady-state kinetic analysis, microscopic equilibria of the donor half-reaction were characterized by an NMR-based intermediate analysis. These studies reveal that formation of the central 1,2-dihydroxyethyl-ThDP carbanion-enamine intermediate is thermodynamically favored with increasing carbon chain length of the donor ketose substrate. Based on the structure of human transketolase and sequence alignments, putative functional properties of the related transketolase-like proteins TKTL1 and -2 are discussed in light of recent findings suggesting that TKTL1 plays a role in cancerogenesis.
Collapse
Affiliation(s)
- Lars Mitschke
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Christoph Parthier
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Kathrin Schröder-Tittmann
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | - Stefan Lüdtke
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
- the Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Kai Tittmann
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
- the Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
34
|
Abstract
Redox dysregulation originating from metabolic alterations and dependence on mitogenic and survival signaling through reactive oxygen species represents a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. This review will present an update on drug discovery, target identification, and mechanisms of action of experimental redox chemotherapeutics with a focus on pro- and antioxidant redox modulators now in advanced phases of preclinal and clinical development. Recent research indicates that numerous oncogenes and tumor suppressor genes exert their functions in part through redox mechanisms amenable to pharmacological intervention by redox chemotherapeutics. The pleiotropic action of many redox chemotherapeutics that involves simultaneous modulation of multiple redox sensitive targets can overcome cancer cell drug resistance originating from redundancy of oncogenic signaling and rapid mutation.Moreover, some redox chemotherapeutics may function according to the concept of synthetic lethality (i.e., drug cytotoxicity is confined to cancer cells that display loss of function mutations in tumor suppressor genes or upregulation of oncogene expression). The impressive number of ongoing clinical trials that examine therapeutic performance of novel redox drugs in cancer patients demonstrates that redox chemotherapy has made the crucial transition from bench to bedside.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
35
|
Agyei-Owusu K, Leeper FJ. Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches. FEBS J 2009; 276:2905-16. [PMID: 19490097 DOI: 10.1111/j.1742-4658.2009.07018.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of thiamin diphosphate (ThDP) as a cofactor for enzymes has been known for many decades. This minireview covers the progress made in understanding the catalytic mechanism of ThDP-dependent enzymes through the use of ThDP analogues. Many such analogues have been synthesized and have provided information on the functional groups necessary for the binding and catalytic activity of the cofactor. Through these studies, the important role of hydrophobic interactions in stabilizing reaction intermediates in the catalytic cycle has been recognized. Stable analogues of intermediates in the ThDP-catalysed reaction mechanism have also been synthesized and crystallographic studies using these analogues have allowed enzyme structures to be solved that represent snapshots of the reaction in progress. As well as providing mechanistic information about ThDP-dependent enzymes, many analogues are potent inhibitors of these enzymes. The potential of these compounds as therapeutic targets and as important herbicidal agents is discussed. More recently, the way that ThDP regulates the genes for its own biosynthesis through the action of riboswitches has been discovered. This opens a new branch of thiamin research with the potential to provide new therapeutic targets in the fight against infection.
Collapse
|
36
|
Hopper DW, Crombie AL, Clemens JJ, Kwon S. Chapter 6.1: Six-Membered Ring Systems: Pyridine and Benzo Derivatives. PROGRESS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1016/s0959-6380(09)70039-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Abstract
Cofactors are organic molecules, most of them originating from vitamins, that bind to enzymes making them able to catalyze defined reactions. A cofactor-based chemogenomics approach exploits the presence of a cofactor-binding domain to develop compound scaffolds tailored to mimic the cofactor and to replace it within target enzyme classes. As a result, a loss of function is observed. An expansion of the cofactor scaffold to include structural/chemical features derived from the substrate, that usually binds at cofactor adjacent sites, increases the specificity of the enzyme fishing. This approach has been so far applied only to NAD(P)(+)-dependent enzymes. However, it is suitable for all other cofactors, with difficulties, for some of them, originated by very tight binding. In the case of cofactors covalently bound to the enzyme, the competition between the natural cofactor and the cofactor scaffold mimic can only occur during enzyme folding.
Collapse
Affiliation(s)
- Ratna Singh
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | |
Collapse
|
38
|
Obiol-Pardo C, Rubio-Martinez J. Homology modeling of human transketolase: description of critical sites useful for drug design and study of the cofactor binding mode. J Mol Graph Model 2008; 27:723-34. [PMID: 19111488 DOI: 10.1016/j.jmgm.2008.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a new target protein for cancer research. However, since the crystal structure of human Transketolase is unknown, no structure-based methods can be used to identify new inhibitors. We performed homology modeling of human Transketolase using the crystal structure of yeast as a template, and then refined the model through molecular dynamics simulations. Based on the resulting structure we propose five critical sites containing arginines (Arg 101, Arg 318, Arg 395, Arg 401 and Arg 474) that contribute to dimer stability or catalytic activity. In addition, an interaction analysis of its cofactor (thiamine pyrophosphate) and a binding site description were carried out, suggesting the substrate channel already identified in yeast Transketolase. A binding free energy calculation of its cofactor was performed to establish the main driving forces of binding. In summary, we describe a reliable model of human Transketolase that can be used in structure-based drug design and in the search for new Transketolase inhibitors that disrupt dimer stability and cover the critical sites found.
Collapse
Affiliation(s)
- Cristian Obiol-Pardo
- Dept. de Química Física, Universitat de Barcelona and The Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Martí i Franqués 1, E-08028 Barcelona, Spain
| | | |
Collapse
|