1
|
Gruber N, Fernández-Canigia L, Kilimciler NB, Stipa P, Bisceglia JA, García MB, Gonzalez Maglio DH, Paz ML, Orelli LR. Amidinoquinoxaline N-oxides: synthesis and activity against anaerobic bacteria. RSC Adv 2023; 13:27391-27402. [PMID: 37711381 PMCID: PMC10498151 DOI: 10.1039/d3ra01184d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023] Open
Abstract
We present herein an in-depth study on the activity of amidinoquinoxaline N-oxides 1 against Gram-positive and Gram-negative anaerobic bacteria. Based on 5-phenyl-2,3-dihydropyrimidoquinoxaline N-oxide 1a, the selected structural variations included in our study comprise the substituents α- to the N-oxide function, the benzofused ring, substitution and quaternization of the amidine moiety, and the amidine ring size. Compounds 1 showed good to excellent antianaerobic activity, evaluated as the corresponding CIM50 and CIM90 values, and an antimicrobial spectrum similar to metronidazole. Six out of 13 compounds 1 had CIM90 values significantly lower than the reference drug. Among them, imidazoline derivatives 1i-l were the most active structures. Such compounds were synthesized by base-promoted ring closure of the corresponding amidines. The N-oxides under study showed no significant cytotoxicity against RAW 264.7 cells, with high selectivity indexes. Their calculated ADME properties indicate that the compounds are potentially good oral drug candidates. The antianaerobic activity correlated satisfactorily with the electron affinity of the compounds, suggesting that they may undergo bioreductive activation before exerting their antibacterial activity.
Collapse
Affiliation(s)
- Nadia Gruber
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | | | - Natalia B Kilimciler
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Pierluigi Stipa
- SIMAU Departament - Chemistry Division, Università Politecnica delle Marche Via Brecce Bianche 12 Ancona (I-60131) Italy
| | - Juan A Bisceglia
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - María B García
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Daniel H Gonzalez Maglio
- Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Mariela L Paz
- Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Liliana R Orelli
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| |
Collapse
|
2
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
3
|
Sroor FM, Khatab TK, Basyouni WM, El-Bayouki KAM. Synthesis and molecular docking studies of some new thiosemicarbazone derivatives as HCV polymeraseinhibitors. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1605443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Tamer K. Khatab
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Khairy A. M. El-Bayouki
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Li M, Yu Y, Liu J, Chen Z, Cao S. Investigation of the interaction between benzaldehyde thiosemicarbazone compounds and xanthine oxidase. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Jarrad A, Karoli T, Blaskovich MAT, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 2015; 58:5164-85. [PMID: 25760275 PMCID: PMC4500462 DOI: 10.1021/jm5016846] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/17/2022]
Abstract
In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization.
Collapse
Affiliation(s)
- Angie
M. Jarrad
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tomislav Karoli
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dena Lyras
- School
of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Cooper
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Lobana TS. Activation of C–H bonds of thiosemicarbazones by transition metals: synthesis, structures and importance of cyclometallated compounds. RSC Adv 2015. [DOI: 10.1039/c5ra03333k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transition metals (PdII, PtII, RuII, RhIIIand IrIII) have induced activation of C–H bonds of thiosemicarbazones and yielded mono-, di-, tri- and tetra-nuclear complexes.
Collapse
Affiliation(s)
- Tarlok S. Lobana
- Department of Chemistry
- Center of Advanced Studies
- Guru Nanak Dev University
- Amritsar 143005
- India
| |
Collapse
|
7
|
Machakanur SS, Patil BR, Naik GN, Bakale RP, Annie Bligh S, Gudasi KB. Synthesis, characterization and antiproliferative activity of hexa arm star shaped thiosemicarbazones derived from cyclotriphosphazene core. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Tsutsumi LS, Owusu YB, Hurdle JG, Sun D. Progress in the discovery of treatments for C. difficile infection: A clinical and medicinal chemistry review. Curr Top Med Chem 2014; 14:152-75. [PMID: 24236721 PMCID: PMC3921470 DOI: 10.2174/1568026613666131113154753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/06/2013] [Accepted: 09/15/2013] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is an anaerobic, Gram-positive pathogen that causes C. difficile infection, which results in significant morbidity and mortality. The incidence of C. difficile infection in developed countries has become increasingly high due to the emergence of newer epidemic strains, a growing elderly population, extensive use of broad spectrum antibiotics, and limited therapies for this diarrheal disease. Because treatment options currently available for C. difficile infection have some drawbacks, including cost, promotion of resistance, and selectivity problems, new agents are urgently needed to address these challenges. This review article focuses on two parts: the first part summarizes current clinical treatment strategies and agents under clinical development for C. difficile infection; the second part reviews newly reported anti-difficile agents that have been evaluated or reevaluated in the last five years and are in the early stages of drug discovery and development. Antibiotics are divided into natural product inspired and synthetic small molecule compounds that may have the potential to be more efficacious than currently approved treatments. This includes potency, selectivity, reduced cytotoxicity, and novel modes of action to prevent resistance.
Collapse
Affiliation(s)
| | | | | | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA.
| |
Collapse
|
9
|
Adams M, Li Y, Khot H, De Kock C, Smith PJ, Land K, Chibale K, Smith GS. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(ii)–arene complexes. Dalton Trans 2013; 42:4677-85. [DOI: 10.1039/c3dt32740j] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Alomar K, Gaumet V, Allain M, Bouet G, Landreau A. Synthesis, crystal structure, characterisation, and antifungal activity of 3-thiophene aldehyde semicarbazone (3STCH), 2,3-thiophene dicarboxaldehyde bis(semicarbazone) (2,3BSTCH2) and their nickel (II) complexes. J Inorg Biochem 2012; 115:36-43. [DOI: 10.1016/j.jinorgbio.2012.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
11
|
Yang W, Liu H, Li M, Wang F, Zhou W, Fan J. Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with cobalt. J Inorg Biochem 2012; 116:97-105. [PMID: 23018272 DOI: 10.1016/j.jinorgbio.2012.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022]
Abstract
Four new thiocarbonyl fluorobenzamides and their complexes with cobalt have been synthesized and characterized by elemental analysis, FTIR, and (1)H NMR. Five crystal structures of the thioylbenzamides complexes of Co(PTCB)(3), Co(2FPTCB)(3), Co(4FPTCB)(3), Co(2FMTCB)(2) and Co(4FMTCB)(3) have been determined by X-ray diffraction. The antibacterial properties of these compounds against the bacteria, E. coli, Staphylococcus aureus, B. subtilis, P. aeruginosa, and Shewanella sp. were investigated. The experiments showed that both compounds and the complexes had the antibacterial activities against all of the studied bacteria. The thioylbenzamides had stronger controls for the bacteria of E. coli, S. aureus, B. subtilis and P. aeruginosa than their corresponding cobalt complexes. There was the contrary result against the bacteria of Shewanella sp. The para-substitution of fluorine atom increased antibacterial activities, while fluorine atom was substituted on ortho-benzoyl, the antibacterial activity weakened. The thioylbenzamides linked to piperidine instead of a morpholine group may increase the antibacterial activities.
Collapse
Affiliation(s)
- Wen Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Chellan P, Land KM, Shokar A, Au A, An SH, Clavel CM, Dyson PJ, Kock CD, Smith PJ, Chibale K, Smith GS. Exploring the Versatility of Cycloplatinated Thiosemicarbazones as Antitumor and Antiparasitic Agents. Organometallics 2012. [DOI: 10.1021/om300334z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prinessa Chellan
- Department
of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Ajit Shokar
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Aaron Au
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Seung Hwan An
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Catherine M. Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote Schuur Hospital,
Observatory, 7925, South Africa
| | - Peter J. Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote Schuur Hospital,
Observatory, 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch
7701, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
13
|
Chellan P, Stringer T, Shokar A, Dornbush PJ, Vazquez-Anaya G, Land KM, Chibale K, Smith GS. Synthesis and in vitro evaluation of palladium(II) salicylaldiminato thiosemicarbazone complexes against Trichomonas vaginalis. J Inorg Biochem 2011; 105:1562-8. [DOI: 10.1016/j.jinorgbio.2011.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 11/17/2022]
|
14
|
Parrilha GL, da Silva JG, Gouveia LF, Gasparoto AK, Dias RP, Rocha WR, Santos DA, Speziali NL, Beraldo H. Pyridine-derived thiosemicarbazones and their tin(IV) complexes with antifungal activity against Candida spp. Eur J Med Chem 2011; 46:1473-82. [PMID: 21353348 DOI: 10.1016/j.ejmech.2011.01.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/28/2022]
Abstract
[(n-Bu)Sn(2Ac4oClPh)Cl2] (1), [(n-Bu)Sn(2Ac4oFPh)Cl2] (2), [(n-Bu)Sn(2Ac4oNO2Ph)Cl2] (3), [(n-Bu)Sn(2Bz4oClPh)Cl2] (4), [(n-Bu)Sn(2Bz4oFPh)Cl2] (5) and [(n-Bu)Sn(2Bz4oNO2Ph)Cl2] (6) were obtained by reacting [(n-Bu)SnCl3] with 2-acetylpyridine-N4-orthochlorophenyl thiosemicarbazone (H2Ac4oClPh), 2-acetylpyridine-N4-orthofluorphenyl thiosemicarbazone (H2Ac4oFPh), 2-acetylpyridine-N4-orthonitrophenyl thiosemicarbazone (H2Ac4oNO2Ph), and with the corresponding 2-benzoylpyridine-derived thiosemicarbazones (H2Bz4oClPh, H2ABz4oFPh and H2Bz4oNO2Ph). The antifungal activity of the studied compounds was evaluated against several Candida species. Upon coordination of H2Bz4oNO2Ph to tin in complex (6) the antifungal activity increased three times against Candida albicans and Candida krusei and six times against Candida glabrata and Candida parapsilosis. The minimum inhibitory concentration (MIC) values of H2Ac4oNO2Ph and its complex (3) against C. albicans, C. parapsilosis and C. glabrata are similar to that of fluconazole. All studied compounds were more active than fluconazole against C. krusei.
Collapse
Affiliation(s)
- Gabrieli L Parrilha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chellan P, Nasser S, Vivas L, Chibale K, Smith GS. Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity. J Organomet Chem 2010. [DOI: 10.1016/j.jorganchem.2010.06.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Manganese(II) complexes with N4-methyl-4-nitrobenzaldehyde, N4-methyl-4-nitroacetofenone, and N4-methyl-4-nitrobenzophenone thiosemicarbazone: Investigation of in vitro activity against Trypanosoma cruzi. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|