1
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Chen C, Lim D, Cai Z, Zhang F, Liu G, Dong C, Feng Z. HDAC inhibitor HPTA initiates anti-tumor response by CXCL9/10-recruited CXCR3 +CD4 +T cells against PAHs carcinogenicity. Food Chem Toxicol 2023; 176:113783. [PMID: 37059382 DOI: 10.1016/j.fct.2023.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure in food is closely associated with the occurrence and development of breast cancer, which may attribute to altered immunotoxicity and immune regulation. Currently, cancer immunotherapy aims to promote tumor-specific T cell responses, especially CD4+T helper cells (Th) for anti-tumor immunity. The histone deacetylase inhibitors (HDACis) are found to exert an anti-tumor effect by reshaping the tumor immune microenvironment, but the immune regulatory mechanism of HDACis in PAHs-induced breast tumor remains elusive. Here, using established breast cancer models induced by 7,12-dimethylbenz[a]anthracene (DMBA), a potent carcinogenic agent of PAH, the novel HDACi, 2-hexyl-4-pentylene acid (HPTA) exhibited anti-tumor effect by activating T lymphocytes immune function. HPTA recruited CXCR3+CD4+T cells into chemokines CXCL9/10-enriched tumor sites, the increased secretion of CXCL9/10 was regulated by the NF-κB-mediated pathway. Furthermore, HPTA promoted Th1 differentiation and assisted cytotoxic CD8+T cells in the elimination of breast cancer cells. These findings support the proposition of HPTA as a potential therapeutic in the treatment of PAHs-induced carcinogenicity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
4
|
Prasanna P, Joshi T, Pant M, Pundir H, Chandra S. Evaluation of the inhibitory potential of Valproic acid against histone deacetylase of Leishmania donovani and computational studies of Valproic acid derivatives. J Biomol Struct Dyn 2022:1-18. [PMID: 35706132 DOI: 10.1080/07391102.2022.2087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Valproic acid (VA) is a proven inhibitor of human histone deacetylases (HDACs). The homogenous HDAC has been associated with all major human parasitic pathogens and hence, it has been considered an attractive drug target for anti-leishmanial therapy. To assist in drug design endeavors for HDACs, an in-vitro study has been presented to investigate the VA inhibition on Leishmania donovani HDAC (LdHDAC). The regression analysis of VA by 24 hrs viability assay confirmed its activity against LdHDAC. Moreover, the toxicity of VA is also well documented. Thus, the in-silico experiments were also conducted to screen the non-toxic VA derivatives as anti-leishmanial drug candidates having potential as inhibitors of LdHDAC. For in-silico study, the 3D structure of target LdHDAC was developed by homology modeling. Based on their in-silico activity, we shortlisted 13 VA derivatives having maximum affinity for LdHDAC and identified four potential derivatives that can specifically bind to this protein. After that, these ligands were subjected to molecular dynamics simulation. These derivatives may be effective against L. donovani promastigotes since they followed Lipinski's RO5 and were non-toxic. Thus, screened derivatives can be considered as lead ligands for targeting LdHDAC and may be used as possible drug candidates to treat leishmaniasis and overcome the limitation of anti-leishmanial drugs. This is the first report of antileishmanial potential of VA and its derivatives targeting LdHDAC. Hence, the current investigation presents a search for novel target specific drugs to aid the anti-leishmanial drug development. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, India
| | - Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Manish Pant
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemlata Pundir
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| |
Collapse
|
5
|
Ding C, Su B, Li Q, Ding W, Liu G, Cai Z, Zhang F, Lim D, Feng Z. Histone deacetylase inhibitor 2-hexyl-4-pentynoic acid enhances hydroxyurea therapeutic effect in triple-negative breast cancer cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503422. [PMID: 35094806 DOI: 10.1016/j.mrgentox.2021.503422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer (TNBC) treatment has only limited effect, and it causes a significant number of deaths. Histone deacetylase inhibitors (HDACis) are emerging as promising anti-tumor agents in many types of cancers. We thus hypothesized that 2-hexyl-4-pentynoic acid (HPTA), a novel HDACi, could sensitize TNBC to hydroxyurea (HU, a ribonucleotide reductase inhibitor). In the present study, we investigated the effect of HPTA, alone or in combination with HU on cell survival, DNA double-strand breaks (DSBs), key homologous recombination (HR) repair proteins and cell cycle progression in MDA-MB-468 and MDA-MB-231 human TNBC cell lines. HPTA and HU synergistically inhibited the survival of TNBC cell lines and resulted in the accumulation of DNA double-strand breaks (DSBs). HPTA can sensitize TNBC cells to HU by inhibiting replication protein A2 (RPA2) hyperphosphorylation-mediated HR repair, and lessen cell accumulation in S-phase by inhibiting ATR-CHK1 signaling pathway. Taken together, our data suggested that HPTA enhances HU therapeutic effect by blocking the HR repair and regulating cell cycle progression in TNBC.
Collapse
Affiliation(s)
- Chenxia Ding
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Benyu Su
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | | | - Wenwen Ding
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia; Translational Health Research Institute, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
6
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
7
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
8
|
2-hexyl-4-pentynoic acid, a potential therapeutic for breast carcinoma by influencing RPA2 hyperphosphorylation-mediated DNA repair. DNA Repair (Amst) 2020; 95:102940. [PMID: 32795962 DOI: 10.1016/j.dnarep.2020.102940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
Breast carcinoma is one of the most common malignancies in women. Previous studies have reported that 500 μM valproic acid can sensitize breast tumor cells to the anti-neoplastic agent hydroxyurea. However, the dose requirements for valproic acid is highly variable due to the wide inter-individuals clinical characteristics. High therapeutic dose of valproic acid required to induce anti-tumor activity in solid tumor was associated with increased adverse effects. There are attempts to locate suitably high-efficient low-toxicity valproic acid derivatives. We demonstrated that lower dose of 2-hexyl-4-pentynoic acid (HPTA; 15 μM) has similar effects as 500 μM VPA in inhibiting breast cancer cell growth and sensitizing the tumor cells to hydroxyurea on MCF7 cells, EUFA423 cells, MCF7 cells with defective RPA2-p gene and primary culture cells derived from tissue-transformed breast tumor cells. We discovered HPTA resulted in more DNA double-strand breaks, the homologous recombination was inhibited through the interference of the hyperphosphorylation of replication protein A2 and recombinase Rad51. Our data postulate that HPTA may be a potential novel sensitizer to hydroxyurea in the treatment of breast carcinoma.
Collapse
|
9
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
10
|
Xu HH, Zhang XH, Zhang XG. Copper-Catalyzed Tandem Sulfuration/Annulation of Propargylamines with Sulfur via C-N Bond Cleavage. J Org Chem 2019; 84:7894-7900. [PMID: 31132264 DOI: 10.1021/acs.joc.9b00685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper-catalyzed aerobic oxidative sulfuration and annulation of propargylamines with elemental sulfur is described. The tandem reaction involves C-N bond cleavage and the formation of multiple C-S bonds, affording 1,2-dithiole-3-thiones in good to excellent yields with good functional group tolerance.
Collapse
Affiliation(s)
- Hong-Hui Xu
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization , Hezhou University , Hezhou 542899 , China
| |
Collapse
|
11
|
Dithiolethiones: a privileged pharmacophore for anticancer therapy and chemoprevention. Future Med Chem 2018; 10:1241-1260. [DOI: 10.4155/fmc-2017-0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dithiolethiones are five-membered sulfur-containing cyclic scaffolds that exhibit antioxidative, anti-inflammatory, antithrombic and chemotherapeutic activities. Dithiolethiones display the chemopreventive and cytoprotective effects by activating the antioxidant response element and mounting the transcription of cytoprotective phase II enzymatic machinery. In addition, several classes of dithiolethiones efficiently modulate the activities of proteins that play crucial roles in normal and cancer cells, including glutathione S-transferase, cyclooxygenases and master regulator NF-κB. The present paper summarizes synthetic aspects, pharmacological potentials and biological attributes of dithiolethiones and its derivatives. Additionally, this review concludes with a discussion on how the current state-of-the-art technologies may help in defining a structure–activity relationship of dithiolethiones, thereby facilitating the design and synthesis of potent drug candidates.
Collapse
|
12
|
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H 2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol 2018; 149:110-123. [PMID: 29175421 PMCID: PMC5866188 DOI: 10.1016/j.bcp.2017.11.014] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous small gaseous signaling molecule, playing an important role in many physiological processes and joining nitric oxide and carbon monoxide in the group of signaling agents termed gasotransmitters. Endogenous concentrations of H2S are generally low, making it difficult to discern precise biological functions. As such, probing the physiological roles of H2S is aided by exogenous delivery of the gas in cell and animal studies. This need for an exogenous source of H2S provides a unique challenge for chemists to develop chemical tools that facilitate the study of H2S under biological conditions. Compounds that degrade in response to a specific trigger to release H2S, termed H2S donors, include a wide variety of functional groups and delivery systems, some of which mimic the tightly controlled endogenous production in response to specific, biologically relevant conditions. This review examines a variety of H2S donor systems classified by their H2S-releasing trigger as well as their H2S release profiles, byproducts, and potential therapeutic applications.
Collapse
Affiliation(s)
- Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kearsley M Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
13
|
Gabriele E, Ricci C, Meneghetti F, Ferri N, Asai A, Sparatore A. Methanethiosulfonate derivatives as ligands of the STAT3-SH2 domain. J Enzyme Inhib Med Chem 2017; 32:337-344. [PMID: 28097912 PMCID: PMC6009886 DOI: 10.1080/14756366.2016.1252757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the aim to discover new STAT3 direct inhibitors, potentially useful as anticancer agents, a set of methanethiosulfonate drug hybrids were synthesized. The in vitro tests showed that all the thiosulfonic compounds were able to strongly and selectively bind STAT3-SH2 domain, whereas the parent drugs were completely devoid of this ability. In addition, some of them showed a moderate antiproliferative activity on HCT-116 cancer cell line. These results suggest that methanethiosulfonate moiety can be considered a useful scaffold in the preparation of new direct STAT3 inhibitors. Interestingly, an unusual kind of organo-sulfur derivative, endowed with valuable antiproliferative activity, was occasionally isolated. [Formula: see text].
Collapse
Affiliation(s)
- Elena Gabriele
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| | - Chiara Ricci
- b Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milano , Italy
| | - Fiorella Meneghetti
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| | - Nicola Ferri
- c Department of Pharmaceutical and Pharmacological Sciences , Università degli Studi di Padova , Padova , Italy
| | - Akira Asai
- d Center for Drug Discovery, Graduate School of Pharmaceutical Sciences , University of Shizuoka , Shizuoka , Japan
| | - Anna Sparatore
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
14
|
Alpuche-García A, Dávila-González X, Arregui L, Beltrán HI. Novel valproic aminophenol amides with enhanced glial cell viability effect. RSC Adv 2017. [DOI: 10.1039/c7ra00048k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this work, ortho-aminophenols were attached to valproic acid, resulting in seven novel anticancer drug prototypes.
Collapse
Affiliation(s)
| | | | - Leticia Arregui
- Departamento de Ciencias Naturales
- DCNI
- UAM Cuajimalpa
- Ciudad de México
- Mexico
| | - Hiram I. Beltrán
- Departamento de Ciencias Naturales
- DCNI
- UAM Cuajimalpa
- Ciudad de México
- Mexico
| |
Collapse
|
15
|
Regulatory roles of epigenetic modulators, modifiers and mediators in lung cancer. Semin Cancer Biol 2016; 42:4-12. [PMID: 27840279 DOI: 10.1016/j.semcancer.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
Lung cancer as the leading cause of cancer-related deaths can be initiated and progressed by the interaction between dynamically genetic and epigenetic elements, although mechanisms mediating lung cancer development and progression remain unclear. Tumor progenitor genes may contribute to lung carcinogenesis and cancer progression, are epigenetically disrupted at the early stages of malignancies even before mutations, and alter cell differentiation throughout tumor evolution. The present review explores potential roles and mechanisms of epigenetic modulators, modifiers and mediators in the development of lung cancer. We also overviewed potential mechanisms by which epigenetic modulators, modifiers and mediators control and regulate 3D nuclear architectures, and discussed translational efforts to epigenetic modifications for treatment of lung cancer. Deep understanding of epigenetic modulators, modifiers and mediators will benefit the discovery and development of new diagnostics and therapies for lung cancer.
Collapse
|
16
|
Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev 2015; 34:229-41. [DOI: 10.1007/s10555-015-9563-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Hasegawa U, van der Vlies AJ. Design and synthesis of polymeric hydrogen sulfide donors. Bioconjug Chem 2014; 25:1290-300. [PMID: 24942989 DOI: 10.1021/bc500150s] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that has several important biological functions in the human body. Because of the difficulties of handling H2S gas, small organic compounds that release H2S under physiological conditions have been developed. The observed bioactivities of these H2S donors have generally been directly correlated with their H2S release properties. However, apart from H2S release, these H2S donors also exert biological effects by direct interaction with intracellular components within the cytoplasm after passive diffusion across cellular membranes. Here we report polymeric H2S donors based on ADT-OH which would alter cellular trafficking of ADT-OH to minimize the unfavorable interactions with intracellular components. We designed and synthesized a poly(ethylene glycol)-ADT (PEG-ADT) conjugate having ADT linked via an ether bond. Whereas ADT-OH significantly reduced cell viability in murine macrophages, the PEG-ADT conjugate did not show obvious cytotoxicity. The PEG-ADT conjugate released H2S in murine macrophages but not in the presence of serum proteins. The PEG-ADT conjugate was taken up by the cell through the endocytic pathway and stayed inside endolysosomes, which is different from the small amphiphilic donor ADT-OH that can directly enter the cytoplasm. Furthermore, PEG-ADT was capable of potentiating LPS-induced inflammation. This polymeric H2S donor approach may help to better understand the H2S bioactivities of the H2S donor ADT-OH.
Collapse
Affiliation(s)
- Urara Hasegawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Osaka 565-0871, Japan
| | | |
Collapse
|
18
|
Petta V, Gkiozos I, Strimpakos A, Syrigos K. Histones and lung cancer: are the histone deacetylases a promising therapeutic target? Cancer Chemother Pharmacol 2013; 72:935-52. [DOI: 10.1007/s00280-013-2223-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
|
19
|
Recent Progress in 1,2-Dithiole-3-thione Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-407777-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
20
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1372] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
21
|
Tesei A, Brigliadori G, Carloni S, Fabbri F, Ulivi P, Arienti C, Sparatore A, Del Soldato P, Pasini A, Amadori D, Silvestrini R, Zoli W. Organosulfur derivatives of the HDAC inhibitor valproic acid sensitize human lung cancer cell lines to apoptosis and to cisplatin cytotoxicity. J Cell Physiol 2012; 227:3389-96. [DOI: 10.1002/jcp.24039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Olson KR. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol 2011; 301:R297-312. [PMID: 21543637 DOI: 10.1152/ajpregu.00045.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H(2)S) has become the hot new signaling molecule that seemingly affects all organ systems and biological processes in which it has been investigated. It has also been shown to have both proinflammatory and anti-inflammatory actions and proapoptotic and anti-apoptotic effects and has even been reported to induce a hypometabolic state (suspended animation) in a few vertebrates. The exuberance over potential clinical applications of natural and synthetic H(2)S-"donating" compounds is understandable and a number of these function-targeted drugs have been developed and show clinical promise. However, the concentration of H(2)S in tissues and blood, as well as the intrinsic factors that affect these levels, has not been resolved, and it is imperative to address these points to distinguish between the physiological, pharmacological, and toxicological effects of this molecule. This review will provide an overview of H(2)S metabolism, a summary of many of its reported "physiological" actions, and it will discuss the recent development of a number of H(2)S-donating drugs that show clinical potential. It will also examine some of the misconceptions of H(2)S chemistry that have appeared in the literature and attempt to realign the definition of "physiological" H(2)S concentrations upon which much of this exuberance has been established.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana 46617, USA.
| |
Collapse
|
23
|
Predmore BL, Lefer DJ. Development of hydrogen sulfide-based therapeutics for cardiovascular disease. J Cardiovasc Transl Res 2010; 3:487-98. [PMID: 20628909 DOI: 10.1007/s12265-010-9201-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The physiological role of the gaseous signaling molecule hydrogen sulfide (H(2)S) was first realized in the mid-1990s with the work of Abe and Kimura. Since then, it has become evident that this endogenous gas is extremely important in the homeostasis of the cardiovascular system and the pathogenesis of cardiovascular disease. Several biotechnology companies have developed and are developing H(2)S-based therapeutic compounds, and there are ongoing clinical trials investigating the therapeutic potential of H(2)S. Several organic and chemical compounds that are known H(2)S donors have the potential to be developed into effective H(2)S-based therapeutic agents. This review will provide a historical and current perspective on the role(s) of H(2)S in the cardiovascular system and the current state of development and future outlook of H(2)S-based therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Benjamin L Predmore
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street, NE, Atlanta, GA 30308, USA
| | | |
Collapse
|
24
|
Moody TW, Switzer C, Santana-Flores W, Ridnour LA, Berna M, Thill M, Jensen RT, Sparatore A, Del Soldato P, Yeh GC, Roberts DD, Giaccone G, Wink DA. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer 2010; 68:154-60. [PMID: 19628293 PMCID: PMC3835159 DOI: 10.1016/j.lungcan.2009.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
The effects of dithiolethione modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 microg/ml concentrations significantly reduced prostaglandin (PG)E(2) levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 microg/ml, respectively. Using the MTT assay, 10 microg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE(2) levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC.
Collapse
Affiliation(s)
- Terry W Moody
- National Cancer Institute, Office of the Director, Center for Cancer Research, Bethesda, MD 20892-1500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Giustarini D, Perrino E, Tazzari V, Rossi R. HPLC determination of novel dithiolethione containing drugs and its application for in vivo studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 878:340-6. [PMID: 20006565 DOI: 10.1016/j.jchromb.2009.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
A panel of new drugs obtained by grafting a sulfurated moiety, i.e. 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADTOH) onto existing drugs have been synthesized and their in vivo action is under preclinical evaluation. In the present paper we describe rapid HPLC methods to detect ADTOH derivatives of valproic acid (ACS2), sildenafil (ACS6), aspirin (ACS14) and diclofenac (ACS15) in plasma. These methods allow the simultaneous detection of the potential drugs and of ADTOH moiety. In the case of ACS14 the de-acetylated metabolite (ACS21) can also be concomitantly measured. The chromatographic separation was performed on a C18 column, applying a mobile phase consisting of a mixture of trifluoroacetic acid and acetonitrile. ADTOH, ACS6, ACS14, ACS21 were separated isocratically whereas ACS2 and ACS15 were separated applying gradient elution. The methods are precise and accurate, with a low quantification limit of 200 nM for ACS2, ACS15 and ACS21 or 100 nM for ADTOH, ACS6 and ACS14. The mean absolute recovery for all tested molecules was always found to be close to 100%. The methods are shown to be selective and linear in the range 0.2-50 microM and thus appear suitable for pharmacokinetic studies with ADTOH containing compounds, as indicated by exemplificative experiments performed with intravenous administration of the drugs to rats.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Evolutionary Biology, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | |
Collapse
|
26
|
Howell PM, Liu S, Ren S, Behlen C, Fodstad O, Riker AI. Epigenetics in human melanoma. Cancer Control 2009; 16:200-18. [PMID: 19556960 DOI: 10.1177/107327480901600302] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent technological advances have allowed us to examine the human genome in greater detail than ever before. This has opened the door to an improved understanding of the gene expression patterns involved with cancer. METHODS A review of the literature was performed to determine the role of epigenetic modifications in human melanoma. We focused the search on histone deacetylation, methylation of gene promoter regions, demethylation of CpG islands, and the role of microRNA. We examined the relationship between human melanoma epigenetics and their importance in tumorigenesis, tumor progression, and inhibition of metastasis. The development and clinical application of select pharmacologic agents are also discussed. RESULTS We identified several articles that have extensively studied the role of epigenetics in melanoma, further elucidating the complex processes involved in gene regulation and expression. Several new agents directly affect epigenetic mechanisms in melanoma, with divergent affects on the metastatic potential of melanoma. CONCLUSIONS Epigenetic mechanisms have emerged as having a central role in gene regulation of human melanoma, including the identification of several putative tumor suppressor genes and oncogenes. Further research will focus on the development of novel therapeutics that will likely target and alter such epigenetic changes.
Collapse
Affiliation(s)
- Paul M Howell
- Basic and Translational Research Department, University of South Alabama, Mitchell Cancer Institute, Mobile, Alabama, USA
| | | | | | | | | | | |
Collapse
|