1
|
Fiorentino F, Fabbrizi E, Raucci A, Noce B, Fioravanti R, Valente S, Paolini C, De Maria R, Steinkühler C, Gallinari P, Rotili D, Mai A. Uracil- and Pyridine-Containing HDAC Inhibitors Displayed Cytotoxicity in Colorectal and Glioblastoma Cancer Stem Cells. ChemMedChem 2024; 19:e202300655. [PMID: 38529661 DOI: 10.1002/cmdc.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cancer stem cells (CSCs) are a niche of highly tumorigenic cells featuring self-renewal, activation of pluripotency genes, multidrug resistance, and ability to cause cancer relapse. Seven HDACi (1-7), showing either hydroxamate or 2'-aminoanilide function, were tested in colorectal cancer (CRC) and glioblastoma multiforme (GBM) CSCs to determine their effects on cell proliferation, H3 acetylation levels and in-cell HDAC activity. Two uracil-based hydroxamates, 5 and 6, which differ in substitution at C5 and C6 positions of the pyrimidine ring, exhibited the greatest cytotoxicity in GBM (5) and CRC (6) CSCs, followed by the pyridine-hydroxamate 2, with 2- to 6-fold higher potency than the positive control SAHA. Finally, increased H3 acetylation as well as HDAC inhibition directly in cells by selected 2'-aminoanilide 4 and hydroxamate 5 confirmed target engagement. Further investigation will be conducted into the broad-spectrum anticancer properties of the most potent derivatives and their effects in combination with approved, conventional anticancer drugs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Chantal Paolini
- IRBM S.p.A., Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092, Cinisello Balsamo, Italy
| | - Paola Gallinari
- Exiris S.r.l., Tecnopolo Castel, Romano, Via Castel Romano 100, 00128, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. de Aldo Moro n. 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Elbatrawy OR, Hagras M, El Deeb MA, Agili F, Hegazy M, El-Husseiny AA, Mokhtar MM, Elkhawaga SY, Eissa IH, El-Kalyoubi S. Discovery of New Uracil and Thiouracil Derivatives as Potential HDAC Inhibitors. Pharmaceuticals (Basel) 2023; 16:966. [PMID: 37513878 PMCID: PMC10384246 DOI: 10.3390/ph16070966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Histone deacetylase inhibitors (HDACIs) are a relatively new class of potential drugs for treating cancer. Aim: Discovery of new anticancer agents targeting HDAC. Methods: New uracil and thiouracil derivatives panels were designed and synthesized as HDAC inhibitors. The synthesized compounds were tested against MCF-7, HepG2, and HCT-116. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. The most active member was tested for its potential against cell cycle, apoptosis, caspase-3, and caspase-8. Docking studies were carried out against HDAC1. Results: Compounds 5a, 5b, 5f, 5i, 5k, and 5m exhibited promising cytotoxic activities. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. Regarding the HDAC1 inhibitory activity, compound 5m was the most potent member (IC50 = 0.05 µg/mL) compared to trichostatin A (IC50 = 0.0349 µg/mL). For HDAC4, compound 5m showed superior activity (IC50 = 2.83 µg/mL) than trichostatin A (IC50 = 3.349 µg/mL). Compound 5m showed a high potential to arrest the HCT116 cell cycle at the G0-G1 phase. In addition, it showed an almost 17 times apoptotic effect (37.59%) compared to the control cells (2.17%). Furthermore, Compound 5m showed significant increases in the levels of caspase-3 and caspase-8. Finally, the uracil and thiouracil derivatives showed accepted binding mods against HDAC. Conclusions: Compound 5m has potential anticancer activity targeting HDAC with a significant apoptotic effect.
Collapse
Affiliation(s)
- Omnia R Elbatrawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Moshira A El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
3
|
Svobodová M, Svoboda J, Li BH, Bertolasi V, Socha L, Sedlák M, Marek L. Synthesis and Characterization of New Boron Compounds Using Reaction of Diazonium Tetraphenylborate with Enaminoamides. Molecules 2022; 27:molecules27020367. [PMID: 35056681 PMCID: PMC8782005 DOI: 10.3390/molecules27020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
A family of oxazaborines, diazaborinones, triazaborines, and triazaborinones was prepared by reaction of polarized ethylenes, such as β-enaminoamides, with 4-methylbenzenediazonium tetraphenylborates. The reaction conditions (stirring in CH2Cl2 at room temperature (Method A) or stirring with CH3COONa in CH2Cl2 at room temperature (Method B) or refluxing in the CH2Cl2/toluene mixture (Method C)) controlled the formation and relative content of these compounds in the reaction mixtures from one to three products. Substituted oxazaborines gradually rearranged into diazaborinones at 250 °C. The prepared compounds were characterized by 1H NMR, 13C NMR, IR, and UV–Vis spectroscopy, HRMS, or microanalysis. The structure of individual compounds was confirmed by 11B NMR, 15N NMR, 1D NOESY, and X-ray analysis. The mechanism of reaction of enaminoamides with 4-methylbenzenediazonium tetraphenylborate was proposed.
Collapse
Affiliation(s)
- Markéta Svobodová
- Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (J.S.); (L.S.); (M.S.); (L.M.)
- Correspondence:
| | - Jan Svoboda
- Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (J.S.); (L.S.); (M.S.); (L.M.)
| | - Bing-Han Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Valerio Bertolasi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Luboš Socha
- Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (J.S.); (L.S.); (M.S.); (L.M.)
| | - Miloš Sedlák
- Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (J.S.); (L.S.); (M.S.); (L.M.)
| | - Lukáš Marek
- Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (J.S.); (L.S.); (M.S.); (L.M.)
| |
Collapse
|
4
|
Maucort C, Di Giorgio A, Azoulay S, Duca M. Differentiation of Cancer Stem Cells by Using Synthetic Small Molecules: Toward New Therapeutic Strategies against Therapy Resistance. ChemMedChem 2020; 16:14-29. [PMID: 32803855 DOI: 10.1002/cmdc.202000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.
Collapse
Affiliation(s)
- Chloé Maucort
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| |
Collapse
|
5
|
Was H, Krol SK, Rotili D, Mai A, Wojtas B, Kaminska B, Maleszewska M. Histone deacetylase inhibitors exert anti-tumor effects on human adherent and stem-like glioma cells. Clin Epigenetics 2019; 11:11. [PMID: 30654849 PMCID: PMC6337817 DOI: 10.1186/s13148-018-0598-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background The diagnosis of glioblastoma (GBM), a most aggressive primary brain tumor with a median survival of 14.6 months, carries a dismal prognosis. GBMs are characterized by numerous genetic and epigenetic alterations, affecting patient survival and treatment response. Epigenetic mechanisms are deregulated in GBM as a result of aberrant expression/activity of epigenetic enzymes, including histone deacetylases (HDAC) which remove acetyl groups from histones regulating chromatin accessibility. Nevertheless, the impact of class/isoform-selective HDAC inhibitors (HDACi) on glioma cells, including glioma stem cells, had not been systematically determined. Results Comprehensive analysis of the public TCGA dataset revealed the increased expression of HDAC 1, 2, 3, and 7 in malignant gliomas. Knockdown of HDAC 1 and 2 in human GBM cells significantly decreased cell proliferation. We tested the activity of 2 new and 3 previously described HDACi with different class/isoform selectivity on human GBM cells. All tested compounds exerted antiproliferative properties on glioma cells. However, the HDACi 1 and 4 blocked proliferation of glioblastoma cells leading to G2/M growth arrest without affecting astrocyte survival. Moreover, 1 and 4 at low micromolar concentrations displayed cytotoxic and antiproliferative effects on sphere cultures enriched in glioma stem cells. Conclusions We identified two selective HDAC inhibitors that blocked proliferation of glioblastoma cells, but did not affect astrocyte survival. These new and highly effective inhibitors should be considered as promising candidates for further investigation in preclinical GBM models. Electronic supplementary material The online version of this article (10.1186/s13148-018-0598-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland.,Laboratory of Molecular Oncology, Military Institute of Medicine, 128 Szaserow Str, 04-141, Warsaw, Poland
| | - Sylwia K Krol
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, P.le A. Moro 5, 00185, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-Adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur J Med Chem 2019; 161:277-291. [DOI: 10.1016/j.ejmech.2018.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
7
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
8
|
Synthesis of novel S-acyl and S-alkylpyrimidinone derivatives as potential cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Wang H, Song C, Ding Y, Pan X, Ge Z, Tan BH, Gowda C, Sachdev M, Muthusami S, Ouyang H, Lai L, Francis OL, Morris CL, Abdel-Azim H, Dorsam G, Xiang M, Payne KJ, Dovat S. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia. J Biol Chem 2015; 291:4004-18. [PMID: 26655717 DOI: 10.1074/jbc.m115.679332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/26/2022] Open
Abstract
Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.
Collapse
Affiliation(s)
- Haijun Wang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Xiaokang Pan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Mansi Sachdev
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Sunil Muthusami
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hongsheng Ouyang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Liangxue Lai
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | | | | | - Hisham Abdel-Azim
- the Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California 90027
| | - Glenn Dorsam
- North Dakota State University, Fargo, North Dakota 58108, and
| | - Meixian Xiang
- the College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | | | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
10
|
Di Pompo G, Salerno M, Rotili D, Valente S, Zwergel C, Avnet S, Lattanzi G, Baldini N, Mai A. Novel Histone Deacetylase Inhibitors Induce Growth Arrest, Apoptosis, and Differentiation in Sarcoma Cancer Stem Cells. J Med Chem 2015; 58:4073-9. [DOI: 10.1021/acs.jmedchem.5b00126] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gemma Di Pompo
- Orthopaedic
Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136 Bologna, Italy
- Department
of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Salerno
- Orthopaedic
Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136 Bologna, Italy
- Department
of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Sofia Avnet
- Orthopaedic
Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136 Bologna, Italy
| | - Giovanna Lattanzi
- Institute
of Molecular Genetics, Unit of Bologna IOR, National Research Council of Italy, 40136 Bologna, Italy
| | - Nicola Baldini
- Orthopaedic
Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136 Bologna, Italy
- Department
of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
- Pasteur
Institute—Cenci Bolognetti Foundation, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
11
|
Vibrational spectroscopic and molecular docking study of 2-Benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemotherapeutic agent. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:569-80. [PMID: 25240829 DOI: 10.1016/j.saa.2014.08.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/06/2014] [Accepted: 08/24/2014] [Indexed: 11/24/2022]
Abstract
FT-IR and FT-Raman spectra of 2-Benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile were recorded and analyzed. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory. The geometrical parameters (DFT) are in agreement with the XRD results. HOMO and LUMO and other chemical properties are reported. Nonlinear optical properties are reported. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. The negative (red and yellow) regions of the MEP are related to electrophilic reactivity and the positive (blue) regions to nucleophilic reactivity, as shown in the MEP plot and the title compound has several possible sites, CN, N atom of pyrimidine ring and sulfur atoms for electrophilic attack. From the molecular docking studies it is clear that the title compound binds at the catalytic site of the substrate by weak non-covalent interactions most prominent of which are H-bonding, π-π, alkyl-π, and amide-π interactions.
Collapse
|
12
|
Valente S, Trisciuoglio D, De Luca T, Nebbioso A, Labella D, Lenoci A, Bigogno C, Dondio G, Miceli M, Brosch G, Del Bufalo D, Altucci L, Mai A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J Med Chem 2014; 57:6259-65. [PMID: 24972008 DOI: 10.1021/jm500303u] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe 1,3,4-oxadiazole-containing hydroxamates (2) and 2-aminoanilides (3) as histone deacetylase inhibitors. Among them, 2t, 2x, and 3i were the most potent and selective against HDAC1. In U937 leukemia cells, 2t was more potent than SAHA in inducing apoptosis, and 3i displayed cell differentiation with a potency similar to MS-275. In several acute myeloid leukemia (AML) cell lines, as well as in U937 cells in combination with doxorubicin, 3i showed higher antiproliferative effects than SAHA.
Collapse
Affiliation(s)
- Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome , P. le A. Moro 5, 00185 Rome Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kudyakova YS, Burgart YV, Saloutin VI. Synthesis and properties of 2-azahetarylaminomethylidene 1,3-dicarbonyl compounds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014060165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Valente S, Trisciuoglio D, Tardugno M, Benedetti R, Labella D, Secci D, Mercurio C, Boggio R, Tomassi S, Di Maro S, Novellino E, Altucci L, Del Bufalo D, Mai A, Cosconati S. tert-Butylcarbamate-containing histone deacetylase inhibitors: apoptosis induction, cytodifferentiation, and antiproliferative activities in cancer cells. ChemMedChem 2013; 8:800-11. [PMID: 23526814 DOI: 10.1002/cmdc.201300005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/16/2013] [Indexed: 12/12/2022]
Abstract
Herein we report novel pyrrole- and benzene-based hydroxamates (8, 10) and 2'-aminoanilides (9, 11) bearing the tert-butylcarbamate group at the CAP moiety as histone deacetylase (HDAC) inhibitors. Compounds 8 b and 10 c selectively inhibited HDAC6 at the nanomolar level, whereas the other hydroxamates effected an increase in acetyl-α-tubulin levels in human acute myeloid leukemia U937 cells. In the same cell line, compounds 8 b and 10 c elicited 18.4 and 21.4 % apoptosis, respectively (SAHA: 16.9 %), and the pyrrole anilide 9 c displayed the highest cytodifferentiating effect (90.9 %). In tests against a wide range of various cancer cell lines to determine its antiproliferative effects, compound 10 c exhibited growth inhibition from sub-micromolar (neuroblastoma LAN-5 and SH-SY5Y cells, chronic myeloid leukemia K562 cells) to low-micromolar (lung H1299 and A549, colon HCT116 and HT29 cancer cells) concentrations. In HT29 cells, 10 c increased histone H3 acetylation, and decreased the colony-forming potential of the cancer cells by up to 60 %.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Al-Deeb OA, Al-Turkistani AA, Al-Abdullah ES, El-Brollosy NR, Habib EE, El-Emam AA. Pyrimidine-5-carbonitriles – part III: synthesis and antimicrobial activity of novel 6-(2-substituted propyl)-2,4-disubstituted pyrimidine-5-carbonitriles. HETEROCYCL COMMUN 2013. [DOI: 10.1515/hc-2013-0139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Valente S, Conte M, Tardugno M, Nebbioso A, Tinari G, Altucci L, Mai A. Developing novel non-hydroxamate histone deacetylaseinhibitors: the chelidamic warhead. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00249j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dimethyl 4-hydroxypyridine-2,6-dicarboxylate is a valuable scaffold for HDAC inhibitor design as a replacement of the well-known hydroxamate function.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Mariarosaria Conte
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
| | - Maria Tardugno
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Angela Nebbioso
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
| | - Gabriella Tinari
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Lucia Altucci
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
- CNR-IGB
| | - Antonello Mai
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| |
Collapse
|
17
|
Valente S, Tardugno M, Conte M, Cirilli R, Perrone A, Ragno R, Simeoni S, Tramontano A, Massa S, Nebbioso A, Miceli M, Franci G, Brosch G, Altucci L, Mai A. Novel cinnamyl hydroxyamides and 2-aminoanilides as histone deacetylase inhibitors: apoptotic induction and cytodifferentiation activity. ChemMedChem 2011; 6:698-712. [PMID: 21374822 DOI: 10.1002/cmdc.201000535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/19/2011] [Indexed: 12/26/2022]
Abstract
Four novel series of cinnamyl-containing histone deacetylase (HDAC) inhibitors 1-4 are described, containing hydroxamate (1 and 3) or 2-aminoanilide (2 and 4) derivatives. When screened against class I (maize HD1-B and human HDAC1) and class II (maize HD1-A and human HDAC4) HDACs, most hydroxamates and 2-aminoanilides displayed potent and selective inhibition toward class I enzymes. Immunoblotting analyses performed in U937 leukemia cells generally revealed high acetyl-H3 and low acetyl-α-tubulin levels. Exceptions are compounds 3 f-i, 3 m-o, and 4 k, which showed higher tubulin acetylation than SAHA. In U937 cells, cell-cycle blockade in either the G₂/M or G₁/S phase was observed with 1-4. Five hydroxamates (compounds 1 h-l) effected a two- to greater than threefold greater percent apoptosis than SAHA, and in the CD11c cytodifferentiation test some 2-aminoanilides belonging to both series 2 and 4 were more active than MS-275. The highest-scoring derivatives in terms of apoptosis (1 k, 1 l) or cytodifferentiation (2 c, 4 n) also showed antiproliferative activity in U937 cells, thus representing valuable tools for study in other cancer contexts.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang X, Cao J, Huang J. Solid-phase synthesis of benzofused tricycles based on benzimidazole from resin-bound 3-(2-aminophenylamino)-2-seleno-ester. ACTA ACUST UNITED AC 2010; 11:515-8. [PMID: 19499907 DOI: 10.1021/cc900006z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xian Huang
- Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou, P. R. China
| | | | | |
Collapse
|
19
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|