1
|
Ambrose AJ, Zerio CJ, Sivinski J, Zhu X, Godek J, Sanchez JL, Khanna M, Khanna R, Lairson L, Zhang DD, Chapman E. Human Hsp70 Substrate-Binding Domains Recognize Distinct Client Proteins. Biochemistry 2024; 63:251-263. [PMID: 38243804 DOI: 10.1021/acs.biochem.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The 13 Hsp70 proteins in humans act on unique sets of substrates with diversity often being attributed to J-domain-containing protein (Hsp40 or JDP) cofactors. We were therefore surprised to find drastically different binding affinities for Hsp70-peptide substrates, leading us to probe substrate specificity among the 8 canonical Hsp70s from humans. We used peptide arrays to characterize Hsp70 binding and then mined these data using machine learning to develop an algorithm for isoform-specific prediction of Hsp70 binding sequences. The results of this algorithm revealed recognition patterns not predicted based on local sequence alignments. We then showed that none of the human isoforms can complement heat-shocked DnaK knockout Escherichia coli cells. However, chimeric Hsp70s consisting of the human nucleotide-binding domain and the substrate-binding domain of DnaK complement during heat shock, providing further evidence in vivo of the divergent function of the Hsp70 substrate-binding domains. We also demonstrated that the differences in heat shock complementation among the chimeras are not due to loss of DnaJ binding. Although we do not exclude JDPs as additional specificity factors, our data demonstrate substrate specificity among the Hsp70s, which has important implications for inhibitor development in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher J Zerio
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiaoyi Zhu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jack Godek
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jonathan L Sanchez
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, Arizona 85424, United States
| | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Luke Lairson
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Ambrose AJ, Sivinski J, Zerio CJ, Zhu X, Godek J, Kumirov VK, Coma Brujas T, Torra Garcia J, Annadurai A, Schmidlin CJ, Werner A, Shi T, Zavareh RB, Lairson L, Zhang DD, Chapman E. Discovery and Development of a Selective Inhibitor of the ER Resident Chaperone Grp78. J Med Chem 2023; 66:677-694. [PMID: 36516003 DOI: 10.1021/acs.jmedchem.2c01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms. The top compounds were all tested against a panel of cancer cell lines and disappointingly showed little effect. The top-performing compound, 8, was retested using a series of endoplasmic reticulum (ER) stress-inducing agents and found to synergize with these agents. Finally, 8 was tested in a spheroid tumor model and found to be more potent than in two-dimensional models. The optimized Grp78 inhibitors are the first reported isoform-selective small-molecule-competitive inhibitors of an Hsp70-substrate interaction.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Christopher J Zerio
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Xiaoyi Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Jack Godek
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona85719, United States
| | - Teresa Coma Brujas
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Joan Torra Garcia
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Anandhan Annadurai
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Alyssa Werner
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Taoda Shi
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Reza Beheshti Zavareh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California92037, United States
| | - Luke Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California92037, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
4
|
A high throughput substrate binding assay reveals hexachlorophene as an inhibitor of the ER-resident HSP70 chaperone GRP78. Bioorg Med Chem Lett 2019; 29:1689-1693. [PMID: 31129054 PMCID: PMC6608569 DOI: 10.1016/j.bmcl.2019.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/19/2019] [Indexed: 11/23/2022]
Abstract
Glucose-regulated protein 78 (GRP78) is the ER resident 70 kDa heat shock protein 70 (HSP70) and has been hypothesized to be a therapeutic target for various forms of cancer due to its role in mitigating proteotoxic stress in the ER, its elevated expression in some cancers, and the correlation between high levels for GRP78 and a poor prognosis. Herein we report the development and use of a high throughput fluorescence polarization-based peptide binding assay as an initial step toward the discovery and development of GRP78 inhibitors. This assay was used in a pilot screen to discover the anti-infective agent, hexachlorophene, as an inhibitor of GRP78. Through biochemical characterization we show that hexachlorophene is a competitive inhibitor of the GRP78-peptide interaction. Biological investigations showed that this molecule induces the unfolded protein response, induces autophagy, and leads to apoptosis in a colon carcinoma cell model, which is known to be sensitive to GRP78 inhibition.
Collapse
|
5
|
WAKU T, TERASAWA K, TAKIMOTO K, ICHIKAWA M, HANDA A, TANAKA N. Nanoparticle Formation of Ovalbumin with Cationic Oligopeptides. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2016-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomonori WAKU
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Kimi TERASAWA
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Kazuhiko TAKIMOTO
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Masahiro ICHIKAWA
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | | | - Naoki TANAKA
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
6
|
Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. J Biol Chem 2016; 291:6967-81. [PMID: 26823468 PMCID: PMC4807281 DOI: 10.1074/jbc.m115.673608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.
Collapse
Affiliation(s)
- Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jie Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Weibin Gong
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China,
| |
Collapse
|
7
|
Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS One 2015; 10:e0140006. [PMID: 26458144 PMCID: PMC4601772 DOI: 10.1371/journal.pone.0140006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
The use of chemical tools to validate clinical targets has gained in popularity over recent years and the importance of understanding the activity, selectivity and mechanism of action of these compounds is well recognized. Dysregulation of the HSP70 protein family has been linked to multiple cancer types and drug resistance, highlighting their importance as popular targets for anti-cancer drug development. Apoptozole is a recently identified small molecule, which has been reported to possess strong affinity for the HSP70 isoforms HSP72 and HSC70. We investigated apoptozole as a potential chemical tool for HSP70 inhibition. Unfortunately, using both biochemical and biophysical techniques, we were unable to find any experimental evidence that apoptozole binds to HSP70 in a specific and developable way. Instead, we provide experimental evidence that apoptozole forms aggregates under aqueous conditions that could interact with HSP70 proteins in a non-specific manner.
Collapse
|
8
|
Waku T, Watanabe Y, Haida H, Kunugi S, Tanaka N. Designing Antigenic Peptides with Dual Binding Affinities for HSP70 and MHC. CHEM LETT 2015. [DOI: 10.1246/cl.150526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Yukari Watanabe
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Hirotoshi Haida
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Shigeru Kunugi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
9
|
Needham PG, Patel HJ, Chiosis G, Thibodeau PH, Brodsky JL. Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. J Mol Biol 2015; 427:2948-65. [PMID: 25913688 DOI: 10.1016/j.jmb.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023]
Abstract
The major cytoplasmic Hsp70 chaperones in the yeast Saccharomyces cerevisiae are the Ssa proteins, and much of our understanding of Hsp70 biology has emerged from studying ssa mutant strains. For example, Ssa1 catalyzes multiple cellular functions, including protein transport and degradation, and to this end, the ssa1-45 mutant has proved invaluable. However, the biochemical defects associated with the corresponding Ssa1-45 protein (P417L) are unknown. Consequently, we characterized Ssa1 P417L, as well as a P417S variant, which corresponds to a mutation in the gene encoding the yeast mitochondrial Hsp70. We discovered that the P417L and P417S proteins exhibit accelerated ATPase activity that was similar to the Hsp40-stimulated rate of ATP hydrolysis of wild-type Ssa1. We also found that the mutant proteins were compromised for peptide binding. These data are consistent with defects in peptide-stimulated ATPase activity and with results from limited proteolysis experiments, which indicated that the mutants' substrate binding domains were highly vulnerable to digestion. Defects in the reactivation of heat-denatured luciferase were also evident. Correspondingly, yeast expressing P417L or P417S as the only copy of Ssa were temperature sensitive and exhibited defects in Ssa1-dependent protein translocation and misfolded protein degradation. Together, our studies suggest that the structure of the substrate binding domain is altered and that coupling between this domain and the nucleotide binding domain is disabled when the conserved P417 residue is mutated. Our data also provide new insights into the nature of the many cellular defects associated with the ssa1-45 allele.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gabriela Chiosis
- Program in Molecular Pharmacology and Chemistry; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Patrick H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Repalli J, Meruelo D. Screening strategies to identify HSP70 modulators to treat Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:321-31. [PMID: 25609918 PMCID: PMC4294646 DOI: 10.2147/dddt.s72165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease, the most common type of dementia, is a progressive brain disease that destroys cognitive function and eventually leads to death. In patients with Alzheimer’s disease, beta amyloids and tau proteins form plaques/oligomers and oligomers/tangles that affect the ability of neurons to function properly. Heat shock protein 70 (HSP70) has the ability to prevent aggregation/oligomerization of beta amyloid/tau proteins, making it a potential drug target. To determine this potential, it is essential that we have appropriate in vitro and cell-based assays that help identify specific molecules that affect this aggregation or oligomerization through HSP70. Potential drug candidates could be identified through a series of assays, starting with ATPase assays, followed by aggregation assays with enzymes/proteins and cell-based systems. ATPase assays are effective in identification of ATPase modulators but do not determine the effect of the molecule on beta amyloid and tau proteins. Molecules identified through ATPase assays are validated by thioflavin T aggregation assays in the presence of HSP70. These assays help uncover if a molecule affects beta amyloid and tau through HSP70, but are limited by their in vitro nature. Potential drug candidates are further validated through cell-based assays using mammalian, yeast, or bacterial cultures. However, while these assays are able to determine the effect of a specific molecule on beta amyloid and tau, they fail to determine whether the action is HSP70-dependent. The creation of a novel, direct assay that can demonstrate the antiaggregation effect of a molecule as well as its action through HSP70 would reduce the number of false-positive drug candidates and be more cost-effective and time-effective.
Collapse
Affiliation(s)
- Jayanthi Repalli
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| | - Daniel Meruelo
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. ACTA ACUST UNITED AC 2014; 21:1648-59. [PMID: 25500222 DOI: 10.1016/j.chembiol.2014.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/20/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022]
Abstract
Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.
Collapse
|
12
|
Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med Chem 2011; 3:1523-37. [PMID: 21882945 DOI: 10.4155/fmc.11.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tau is a microtubule-associated protein that accumulates in at least 15 different neurodegenerative disorders, which are collectively referred to as tauopathies. In these diseases, tau is often hyperphosphorylated and found in aggregates, including paired helical filaments, neurofibrillary tangles and other abnormal oligomers. Tau aggregates are associated with neuron loss and cognitive decline, which suggests that this protein can somehow evade normal quality control allowing it to aberrantly accumulate and become proteotoxic. Consistent with this idea, recent studies have shown that molecular chaperones, such as heat shock protein 70 and heat shock protein 90, counteract tau accumulation and neurodegeneration in disease models. These molecular chaperones are major components of the protein quality control systems and they are specifically involved in the decision to retain or degrade many proteins, including tau and its modified variants. Thus, one potential way to treat tauopathies might be to either accelerate interactions of abnormal tau with these quality control factors or tip the balance of triage towards tau degradation. In this review, we summarize recent findings and suggest models for therapeutic intervention.
Collapse
|
13
|
Banerjee D. Recent Advances in the Pathobiology of Hodgkin's Lymphoma: Potential Impact on Diagnostic, Predictive, and Therapeutic Strategies. Adv Hematol 2011; 2011:439456. [PMID: 21318045 PMCID: PMC3034907 DOI: 10.1155/2011/439456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 12/20/2022] Open
Abstract
From its first description by Thomas Hodgkin in 1832, Hodgkin's disease, now called Hodgkin's lymphoma, has continued to be a fascinating neoplasm even to this day. In this review, historical aspects, epidemiology, diagnosis, tumor biology, new observations related to host-microenvironment interactions, gene copy number variation, and gene expression profiling in this complex neoplasm are described, with an exploration of chemoresistance mechanisms and potential novel therapies for refractory disease.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology, British Columbia Cancer Agency (BCCA), 600 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 4E6
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
14
|
Boschelli F, Golas JM, Petersen R, Lau V, Chen L, Tkach D, Zhao Q, Fruhling DS, Liu H, Nam C, Arndt KT. A cell-based screen for inhibitors of protein folding and degradation. Cell Stress Chaperones 2010; 15:913-27. [PMID: 20717760 PMCID: PMC3024082 DOI: 10.1007/s12192-010-0200-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/18/2023] Open
Abstract
Cancer cells are exposed to external and internal stresses by virtue of their unrestrained growth, hostile microenvironment, and increased mutation rate. These stresses impose a burden on protein folding and degradation pathways and suggest a route for therapeutic intervention in cancer. Proteasome and Hsp90 inhibitors are in clinical trials and a 20S proteasome inhibitor, Velcade, is an approved drug. Other points of intervention in the folding and degradation pathway may therefore be of interest. We describe a simple screen for inhibitors of protein synthesis, folding, and proteasomal degradation pathways in this paper. The molecular chaperone-dependent client v-Src was fused to firefly luciferase and expressed in HCT-116 colorectal tumor cells. Both luciferase and protein tyrosine kinase activity were preserved in cells expressing this fusion construct. Exposing these cells to the Hsp90 inhibitor geldanamycin caused a rapid reduction of luciferase and kinase activities and depletion of detergent-soluble v-Src::luciferase fusion protein. Hsp70 knockdown reduced v-Src::luciferase activity and, when combined with geldanamycin, caused a buildup of v-Src::luciferase and ubiquitinated proteins in a detergent-insoluble fraction. Proteasome inhibitors also decreased luciferase activity and caused a buildup of phosphotyrosine-containing proteins in a detergent-insoluble fraction. Protein synthesis inhibitors also reduced luciferase activity, but had less of an effect on phosphotyrosine levels. In contrast, certain histone deacetylase inhibitors increased luciferase and phosphotyrosine activity. A mass screen led to the identification of Hsp90 inhibitors, ubiquitin pathway inhibitors, inhibitors of Hsp70/Hsp40-mediated refolding, and protein synthesis inhibitors. The largest group of compounds identified in the screen increased luciferase activity, and some of these increase v-Src levels and activity. When used in conjunction with appropriate secondary assays, this screen is a powerful cell-based tool for studying compounds that affect protein synthesis, folding, and degradation.
Collapse
Affiliation(s)
- Frank Boschelli
- Department of Oncology, Wyeth Research (now the Center for Integrative Biology and Biotherapeutics, Pfizer R & D), 401 N. Middletown Rd., Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miyata Y, Chang L, Bainor A, McQuade TJ, Walczak CP, Zhang Y, Larsen MJ, Kirchhoff P, Gestwicki JE. High-throughput screen for Escherichia coli heat shock protein 70 (Hsp70/DnaK): ATPase assay in low volume by exploiting energy transfer. ACTA ACUST UNITED AC 2010; 15:1211-9. [PMID: 20926844 DOI: 10.1177/1087057110380571] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate detection reagents, such as quinaldine red (QR). Although such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70's weak enzymatic activity have combined to create significant challenges in high-throughput screening. To overcome these difficulties, the authors have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal Biochem 2005;342:254-259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, the authors tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z' ~0.6, coefficient of variation ~8%), and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70 family members.
Collapse
Affiliation(s)
- Yoshinari Miyata
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Haney CM, Schneider C, Beck B, Brodsky JL, Dömling A. Identification of Hsp70 modulators through modeling of the substrate binding domain. Bioorg Med Chem Lett 2009; 19:3828-31. [PMID: 19435667 PMCID: PMC8894028 DOI: 10.1016/j.bmcl.2009.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 11/22/2022]
Abstract
The design, synthesis and preliminary activity of small molecular weight modulators of the heat shock protein 70 (Hsp70) are described. The compounds provide a starting point for the synthesis of novel tools to decipher Hsp70 biology.
Collapse
Affiliation(s)
- Conor M. Haney
- Departments of Pharmacy and Chemistry, University of Pittsburgh, United States
| | - Corinne Schneider
- Department of Biological Sciences, University of Pittsburgh, United States
| | - Barbara Beck
- Departments of Pharmacy and Chemistry, University of Pittsburgh, United States
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, United States
| | - Alexander Dömling
- Departments of Pharmacy and Chemistry, University of Pittsburgh, United States
| |
Collapse
|
17
|
Zhang D, Shooshtarizadeh P, Laventie BJ, Colin DA, Chich JF, Vidic J, de Barry J, Chasserot-Golaz S, Delalande F, Van Dorsselaer A, Schneider F, Helle K, Aunis D, Prévost G, Metz-Boutigue MH. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One 2009; 4:e4501. [PMID: 19225567 PMCID: PMC2639705 DOI: 10.1371/journal.pone.0004501] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 01/15/2009] [Indexed: 12/11/2022] Open
Abstract
Background Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaM-binding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems.
Collapse
Affiliation(s)
- Dan Zhang
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- Département de Réanimation Médicale, Hôpital de Hautepierre, Strasbourg, France
- First Hospital, Chongqing University of Medical Sciences, Chongqing, China
| | | | - Benoît-Joseph Laventie
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Didier André Colin
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-François Chich
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jasmina Vidic
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean de Barry
- Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 CNRS-Université Louis Pasteur, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 CNRS-Université Louis Pasteur, Strasbourg, France
| | | | - Alain Van Dorsselaer
- Laboratoire de spectrométrie de masse BioOrganique, IPHC-DSA, ULP, CNRS, UMR7178, Strasbourg, France
| | - Francis Schneider
- Département de Réanimation Médicale, Hôpital de Hautepierre, Strasbourg, France
| | - Karen Helle
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dominique Aunis
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Gilles Prévost
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | |
Collapse
|
18
|
Ricci L, Williams KP. Development of fluorescence polarization assays for the molecular chaperone Hsp70 family members: Hsp72 and DnaK. CURRENT CHEMICAL GENOMICS 2008; 2:90-5. [PMID: 20161846 PMCID: PMC2803438 DOI: 10.2174/1875397300802010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 11/22/2022]
Abstract
The heat shock protein 70 (Hsp70) family of chaperones play crucial roles in protein folding and have been linked to numerous diseases. We were interested in developing a generally applicable assay format for the Hsp70 family and have developed fluorescence polarization based assays for both the mammalian Hsp72 and its bacterial counterpart, DnaK. These assays are comparable in assay set-up, incubation conditions and buffer components. Both unfolded polypeptides and synthetic peptides can be utilized as tracers to detect binding although peptides meeting the minimum seven residue length for Hsp70 binders have weaken binding when modified with fluorescein presumably due to steric effects. Although we did not identify a suitable general substrate for all Hsp70 proteins, fluorescein tagged peptide substrates that gave high affinity binding were identified for both DnaK and hsp72. We would predict that these assays will be suitable for identifying both selective chemical probes of Hsp70 family members and "pan" Hsp70 inhibitors.
Collapse
Affiliation(s)
- Laura Ricci
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | | |
Collapse
|
19
|
The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett 2008; 582:2393-6. [PMID: 18539149 DOI: 10.1016/j.febslet.2008.05.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 11/24/2022]
Abstract
Hsp110s are divergent relatives of Hsp70 chaperones that hydrolyze ATP. Hsp110s serve as Hsp70 nucleotide exchange factors and act directly to maintain polypeptide solubility. To date, the impact of peptide binding on Hsp110 ATPase activity is unknown and an Hsp110/peptide affinity has not been measured. We now report on a peptide that binds to the yeast Hsp110, Sse1p, with a K(D) of approximately 2 nM. Surprisingly, the binding of this peptide fails to stimulate Sse1p ATP hydrolysis. Moreover, an Hsp70-binding peptide is unable to associate with Sse1p, suggesting that Hsp70s and Hsp110s possess partially distinct peptide recognition motifs.
Collapse
|