1
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
2
|
Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen I, Li B, Miras-Portugal MT, Novak I, Schöneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Müller CE. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 2020; 177:2413-2433. [PMID: 32037507 DOI: 10.1111/bph.15005] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Massachusetts
| | - Esmerilda G Delicado
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gachet
- Université de Strasbourg INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ivar von Kügelgen
- Biomedical Research Center, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Raquel Perez-Sen
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Ciancetta A, O'Connor RD, Paoletta S, Jacobson KA. Demystifying P2Y 1 Receptor Ligand Recognition through Docking and Molecular Dynamics Analyses. J Chem Inf Model 2017; 57:3104-3123. [PMID: 29182323 DOI: 10.1021/acs.jcim.7b00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We performed a molecular modeling analysis of 100 nucleotide-like bisphosphates and 46 non-nucleotide arylurea derivatives previously reported as P2Y1R binders using the recently solved hP2Y1R structures. We initially docked the compounds at the X-ray structures and identified the binding modes of representative compounds highlighting key patterns in the structure-activity relationship (SAR). We subsequently subjected receptor complexes with selected key agonists (2MeSADP and MRS2268) and antagonists (MRS2500 and BPTU) to membrane molecular dynamics (MD) simulations (at least 200 ns run in triplicate, simulation time 0.6-1.6 μs per ligand system) while considering alternative protonation states of nucleotides. Comparing the temporal evolution of the ligand-protein interaction patterns with available site-directed mutagenesis (SDM) data and P2Y1R apo state simulation provided further SAR insights and suggested reasonable explanations for loss/gain of binding affinity as well as the most relevant charged species for nucleotide ligands. The MD analysis also predicted local conformational changes required for the receptor inactive state to accommodate nucleotide agonists.
Collapse
Affiliation(s)
- Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Robert D O'Connor
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Conroy S, Kindon N, Kellam B, Stocks MJ. Drug-like Antagonists of P2Y Receptors-From Lead Identification to Drug Development. J Med Chem 2016; 59:9981-10005. [PMID: 27413802 DOI: 10.1021/acs.jmedchem.5b01972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2Y receptors are expressed in virtually all cells and tissue types and mediate an astonishing array of biological functions, including platelet aggregation, smooth muscle cell proliferation, and immune regulation. The P2Y receptors belong to the G protein-coupled receptor superfamily and are composed of eight members encoded by distinct genes that can be subdivided into two groups on the basis of their coupling to specific G-proteins. Extensive research has been undertaken to find modulators of P2Y receptors, although to date only a limited number of small-molecule P2Y receptor antagonists have been approved by drug/medicines agencies. This Perspective reviews the known P2Y receptor antagonists, highlighting oral drug-like receptor antagonists, and considers future opportunities for the development of small molecules for clinical evaluation.
Collapse
Affiliation(s)
- Sean Conroy
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Nicholas Kindon
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
5
|
|
6
|
Yang W, Wang Y, Lai A, Qiao JX, Wang TC, Hua J, Price LA, Shen H, Chen XQ, Wong P, Crain E, Watson C, Huang CS, Seiffert DA, Rehfuss R, Wexler RR, Lam PYS. Discovery of 4-aryl-7-hydroxyindoline-based P2Y1 antagonists as novel antiplatelet agents. J Med Chem 2014; 57:6150-64. [PMID: 24931384 DOI: 10.1021/jm5006226] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine diphosphate (ADP)-mediated platelet aggregation is signaled through two distinct G protein-coupled receptors (GPCR) on the platelet surface: P2Y12 and P2Y1. Blocking P2Y12 receptor is a clinically well-validated strategy for antithrombotic therapy. P2Y1 antagonists have been shown to have the potential to provide equivalent antithrombotic efficacy as P2Y12 inhibitors with reduced bleeding in preclinical animal models. We have previously reported the discovery of a potent and orally bioavailable P2Y1 antagonist, 1. This paper describes further optimization of 1 by introducing 4-aryl groups at the hydroxylindoline in two series. In the neutral series, 10q was identified with excellent potency and desirable pharmacokinetic (PK) profile. It also demonstrated similar antithrombotic efficacy with less bleeding compared with the known P2Y12 antagonist prasugrel in rabbit efficacy/bleeding models. In the basic series, 20c (BMS-884775) was discovered with an improved PK and liability profile over 1. These results support P2Y1 antagonism as a promising new antiplatelet target.
Collapse
Affiliation(s)
- Wu Yang
- Discovery Chemistry, ‡Discovery Biology, and §Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research , Post Office Box 5400, Princeton, New Jersey 08643-5400, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Qiao JX, Wang TC, Hiebert S, Hu CH, Schumacher WA, Spronk SA, Clark CG, Han Y, Hua J, Price LA, Shen H, Chacko SA, Everlof G, Bostwick JS, Steinbacher TE, Li YX, Huang CS, Seiffert DA, Rehfuss R, Wexler RR, Lam PYS. 4-Benzothiazole-7-hydroxyindolinyl diaryl ureas are potent P2Y1 antagonists with favorable pharmacokinetics: low clearance and small volume of distribution. ChemMedChem 2014; 9:2327-43. [PMID: 24989964 DOI: 10.1002/cmdc.201402141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 11/10/2022]
Abstract
Current antithrombotic discovery efforts target compounds that are highly efficacious in thrombus reduction with less bleeding liability than the standard of care. Preclinical data suggest that P2Y1 antagonists may have lower bleeding liabilities than P2Y12 antagonists while providing similar antithrombotic efficacy. This article describes our continuous SAR efforts in a series of 7-hydroxyindolinyl diaryl ureas. When dosed orally, 4-trifluoromethyl-7-hydroxy-3,3-dimethylindolinyl analogue 4 was highly efficacious in a model of arterial thrombosis in rats with limited bleeding. The chemically labile CF3 group in 4 was then transformed to various groups via a novel one-step synthesis, yielding a series of potent P2Y1 antagonists. Among them, the 4-benzothiazole-substituted indolines had desirable PK properties in rats, specifically, low clearance and small volume of distribution. In addition, compound 40 had high i.v. exposure and modest bioavailability, giving it the best overall profile.
Collapse
Affiliation(s)
- Jennifer X Qiao
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb Company, Rt. 206 and Province Line Road, Princeton, NJ 08543 (USA).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hu CH, Qiao JX, Han Y, Wang TC, Hua J, Price LA, Wu Q, Shen H, Huang CS, Rehfuss R, Wexler RR, Lam PYS. 2-Amino-1,3,4-thiadiazoles in the 7-hydroxy-N-neopentyl spiropiperidine indolinyl series as potent P2Y1 receptor antagonists. Bioorg Med Chem Lett 2014; 24:2481-5. [PMID: 24767843 DOI: 10.1016/j.bmcl.2014.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/15/2022]
Abstract
Blockade of the P2Y1 receptor is important to the treatment of thrombosis with potentially improved safety margins compared with P2Y12 receptor antagonists. Investigation of a series of urea surrogates of the diaryl urea lead 3 led to the discovery of 2-amino-1,3,4-thiadiazoles in the 7-hydroxy-N-neopentyl spiropiperidine indolinyl series as potent P2Y1 receptor antagonists, among which compound 5a was the most potent and the first non-urea analog with platelet aggregation (PA) IC50 less than 0.5 μM with 10 μM ADP. Several 2-amino-1,3,4-thiadiazole analogs such as 5b and 5f had a more favorable pharmacokinetic profile, such as higher Ctrough, lower Cl, smaller Vdss, and similar bioavailability compared with 3.
Collapse
Affiliation(s)
- Carol H Hu
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Jennifer X Qiao
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Ying Han
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Tammy C Wang
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Laura A Price
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Qimin Wu
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Hong Shen
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Christine S Huang
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Robert Rehfuss
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ruth R Wexler
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Patrick Y S Lam
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
9
|
Jeon YT, Yang W, Qiao JX, Li L, Ruel R, Thibeault C, Hiebert S, Wang TC, Wang Y, Liu Y, Clark CG, Wong HS, Zhu J, Wu DR, Sun D, Chen BC, Mathur A, Chacko SA, Malley M, Chen XQ, Shen H, Huang CS, Schumacher WA, Bostwick JS, Stewart AB, Price LA, Hua J, Li D, Levesque PC, Seiffert DA, Rehfuss R, Wexler RR, Lam PYS. Identification of 1-{2-[4-chloro-1'-(2,2-dimethylpropyl)-7-hydroxy-1,2-dihydrospiro[indole-3,4'-piperidine]-1-yl]phenyl}-3-{5-chloro-[1,3]thiazolo[5,4-b]pyridin-2-yl}urea, a potent, efficacious and orally bioavailable P2Y(1) antagonist as an antiplatelet agent. Bioorg Med Chem Lett 2014; 24:1294-8. [PMID: 24513044 DOI: 10.1016/j.bmcl.2014.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 02/02/2023]
Abstract
Spiropiperidine indoline-substituted diaryl ureas had been identified as antagonists of the P2Y1 receptor. Enhancements in potency were realized through the introduction of a 7-hydroxyl substitution on the spiropiperidinylindoline chemotype. SAR studies were conducted to improve PK and potency, resulting in the identification of compound 3e, a potent, orally bioavailable P2Y1 antagonist with a suitable PK profile in preclinical species. Compound 3e demonstrated a robust antithrombotic effect in vivo and improved bleeding risk profile compared to the P2Y12 antagonist clopidogrel in rat efficacy/bleeding models.
Collapse
Affiliation(s)
- Yoon T Jeon
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Wu Yang
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Ling Li
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Rejean Ruel
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Carl Thibeault
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Sheldon Hiebert
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Tammy C Wang
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Yufeng Wang
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Yajun Liu
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Charles G Clark
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Henry S Wong
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Juliang Zhu
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Dauh-Rurng Wu
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Dawn Sun
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Bang-Chi Chen
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Arvind Mathur
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Silvi A Chacko
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Mary Malley
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Xue-Qing Chen
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Hong Shen
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Christine S Huang
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - William A Schumacher
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jeffrey S Bostwick
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Anne B Stewart
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Laura A Price
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Danshi Li
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Paul C Levesque
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Dietmar A Seiffert
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Robert Rehfuss
- Discovery Biology, Cardiovascular, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ruth R Wexler
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Patrick Y S Lam
- Discovery Chemistry, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
10
|
Qiao JX, Wang TC, Ruel R, Thibeault C, L'Heureux A, Schumacher WA, Spronk SA, Hiebert S, Bouthillier G, Lloyd J, Pi Z, Schnur DM, Abell LM, Hua J, Price LA, Liu E, Wu Q, Steinbacher TE, Bostwick JS, Chang M, Zheng J, Gao Q, Ma B, McDonnell PA, Huang CS, Rehfuss R, Wexler RR, Lam PYS. Conformationally constrained ortho-anilino diaryl ureas: discovery of 1-(2-(1'-neopentylspiro[indoline-3,4'-piperidine]-1-yl)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea, a potent, selective, and bioavailable P2Y1 antagonist. J Med Chem 2013; 56:9275-95. [PMID: 24164581 DOI: 10.1021/jm4013906] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Preclinical antithrombotic efficacy and bleeding models have demonstrated that P2Y1 antagonists are efficacious as antiplatelet agents and may offer a safety advantage over P2Y12 antagonists in terms of reduced bleeding liabilities. In this article, we describe the structural modification of the tert-butyl phenoxy portion of lead compound 1 and the subsequent discovery of a novel series of conformationally constrained ortho-anilino diaryl ureas. In particular, spiropiperidine indoline-substituted diaryl ureas are described as potent, orally bioavailable small-molecule P2Y1 antagonists with improved activity in functional assays and improved oral bioavailability in rats. Homology modeling and rat PK/PD studies on benchmark compound 3l will also be presented. Compound 3l was our first P2Y1 antagonist to demonstrate a robust oral antithrombotic effect with mild bleeding liability in the rat thrombosis and hemostasis models.
Collapse
Affiliation(s)
- Jennifer X Qiao
- Research and Development, Bristol-Myers Squibb Company , 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruel R, L'Heureux A, Thibeault C, Lapointe P, Martel A, Qiao JX, Hua J, Price LA, Wu Q, Chang M, Zheng J, Huang CS, Wexler RR, Rehfuss R, Lam PYS. Potent P2Y1 urea antagonists bearing various cyclic amine scaffolds. Bioorg Med Chem Lett 2013; 23:6825-8. [PMID: 24269480 DOI: 10.1016/j.bmcl.2013.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
A number of new amine scaffolds with good inhibitory activity in the ADP-induced platelet aggregation assay have been found to be potent antagonists of the P2Y1 receptor. SAR optimization led to the identification of isoindoline 3c and piperidine 4a which showed good in vitro binding and functional activities, as well as improved aqueous solubility. Among them, the piperidine 4a showed the best overall profile with favorable PK parameters.
Collapse
Affiliation(s)
- Réjean Ruel
- Research and Development, Bristol-Myers Squibb Company, Pennington, NJ 08534, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pi Z, Sutton J, Lloyd J, Hua J, Price L, Wu Q, Chang M, Zheng J, Rehfuss R, Huang CS, Wexler RR, Lam PY. 2-Aminothiazole based P2Y1 antagonists as novel antiplatelet agents. Bioorg Med Chem Lett 2013; 23:4206-9. [DOI: 10.1016/j.bmcl.2013.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
|
13
|
Ruel R, L'Heureux A, Thibeault C, Daris JP, Martel A, Price LA, Wu Q, Hua J, Wexler RR, Rehfuss R, Lam PYS. New azole antagonists with high affinity for the P2Y(1) receptor. Bioorg Med Chem Lett 2013; 23:3519-22. [PMID: 23668989 DOI: 10.1016/j.bmcl.2013.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Five-membered-ring heterocyclic urea mimics have been found to be potent and selective antagonists of the P2Y1 receptor. SAR of the various heterocyclic replacements is presented, as well as side-chain SAR of the more potent thiadiazole ring system which leads to thiadiazole 4c as a new antiplatelet agent.
Collapse
Affiliation(s)
- Réjean Ruel
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang TC, Qiao JX, Clark CG, Jua J, Price LA, Wu Q, Chang M, Zheng J, Huang CS, Everlof G, Schumacher WA, Wong PC, Seiffert DA, Stewart AB, Bostwick JS, Crain EJ, Watson CA, Rehfuss R, Wexler RR, Lam PYS. Discovery of diarylurea P2Y(1) antagonists with improved aqueous solubility. Bioorg Med Chem Lett 2013; 23:3239-43. [PMID: 23602442 DOI: 10.1016/j.bmcl.2013.03.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022]
Abstract
Preclinical data suggests that P2Y1 antagonists, such as diarylurea compound 1, may provide antithrombotic efficacy similar to P2Y12 antagonists and may have the potential of providing reduced bleeding liabilities. This manuscript describes a series of diarylureas bearing solublizing amine side chains as potent P2Y1 antagonists. Among them, compounds 2l and 3h had improved aqueous solubility and maintained antiplatelet activity compared with compound 1. Compound 2l was moderately efficacious in both rat and rabbit thrombosis models and had a moderate prolongation of bleeding time in rats similar to that of compound 1.
Collapse
Affiliation(s)
- Tammy C Wang
- Medicinal Chemistry, Molecular Sciences and Candidate Optimization, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chao H, Turdi H, Herpin TF, Roberge JY, Liu Y, Schnur DM, Poss MA, Rehfuss R, Hua J, Wu Q, Price LA, Abell LM, Schumacher WA, Bostwick JS, Steinbacher TE, Stewart AB, Ogletree ML, Huang CS, Chang M, Cacace AM, Arcuri MJ, Celani D, Wexler RR, Lawrence RM. Discovery of 2-(phenoxypyridine)-3-phenylureas as small molecule P2Y1 antagonists. J Med Chem 2013; 56:1704-14. [PMID: 23368907 DOI: 10.1021/jm301708u] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two distinct G protein-coupled purinergic receptors, P2Y1 and P2Y12, mediate ADP-driven platelet activation. The clinical effectiveness of P2Y12 blockade is well established. Recent preclinical data suggest that P2Y1 and P2Y12 inhibition provide equivalent antithrombotic efficacy, while targeting P2Y1 has the potential for reduced bleeding liability. In this account, the discovery of a 2-(phenoxypyridine)-3-phenylurea chemotype that inhibited ADP-mediated platelet aggregation in human blood samples is described. Optimization of this series led to the identification of compound 16, 1-(2-(2-tert-butylphenoxy)pyridin-3-yl)-3-4-(trifluoromethoxy)phenylurea, which demonstrated a 68 ± 7% thrombus weight reduction in an established rat arterial thrombosis model (10 mg/kg plus 10 mg/kg/h) while only prolonging cuticle and mesenteric bleeding times by 3.3- and 3.1-fold, respectively, in provoked rat bleeding time models. These results suggest that a P2Y1 antagonist could potentially provide a safe and efficacious antithrombotic profile.
Collapse
Affiliation(s)
- Hannguang Chao
- Bristol-Myers Squibb Research and Development, P.O. Box 5400, Princeton New Jersey 08543, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM. Quinoline: A versatile heterocyclic. Saudi Pharm J 2013; 21:1-12. [PMID: 23960814 PMCID: PMC3744984 DOI: 10.1016/j.jsps.2012.03.002] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/20/2012] [Indexed: 11/20/2022] Open
Abstract
Quinoline or 1-aza-naphthalene is a weak tertiary base. Quinoline ring has been found to possess antimalarial, anti-bacterial, antifungal, anthelmintic, cardiotonic, anticonvulsant, anti-inflammatory, and analgesic activity. Quinoline not only has a wide range of biological and pharmacological activities but there are several established protocols for the synthesis of this ring. The article aims at highlighting these very diversities of the ring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| |
Collapse
|
17
|
Jacobson KA, Jayasekara MS, Costanzi S. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:WMTS68. [PMID: 23336097 PMCID: PMC3547624 DOI: 10.1002/wmts.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y(1-14)Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y(3), P2y(5), P2y(7-10)) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y(12-14) subtypes couple via Gα(i) to inhibit adenylate cyclase, while the remaining subtypes couple through Gα(q) to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5'-mono- and dinucleotides and nucleoside-5'-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y(12)R are already widely used as antithrombotics).
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, USA
| | - M.P. Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. 1A-20, Bethesda, Maryland 20892-0810, USA
| | - Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA
| |
Collapse
|
18
|
Costanzi S, Kumar TS, Balasubramanian R, Harden TK, Jacobson KA. Virtual screening leads to the discovery of novel non-nucleotide P2Y₁ receptor antagonists. Bioorg Med Chem 2012; 20:5254-61. [PMID: 22831801 PMCID: PMC3420346 DOI: 10.1016/j.bmc.2012.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The P2Y(1) receptor (P2Y(1)R) is a G protein-coupled receptor naturally activated by extracellular ADP. Its stimulation is an essential requirement of ADP-induced platelet aggregation, thus making antagonists highly sought compounds for the development of antithrombotic agents. Here, through a virtual screening campaign based on a pharmacophoric representation of the common characteristics of known P2Y(1)R ligands and the putative shape and size of the receptor binding pocket, we have identified novel antagonist hits of μM affinity derived from a N,N'-bis-arylurea chemotype. Unlike the vast majority of known P2Y(1)R antagonists, these drug-like compounds do not have a nucleotidic scaffold or highly negatively charged phosphate groups. Hence, our compounds may provide a direction for the development of receptor probes with altered physicochemical properties.
Collapse
Affiliation(s)
- Stefano Costanzi
- Laboratory of Biological Modeling, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - T. Santhosh Kumar
- Molecular Recognition Section (Laboratory of Biooorganic Chemistry), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Ramachandran Balasubramanian
- Molecular Recognition Section (Laboratory of Biooorganic Chemistry), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC, 27599
| | - Kenneth A. Jacobson
- Molecular Recognition Section (Laboratory of Biooorganic Chemistry), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
19
|
P2 receptors and platelet function. Purinergic Signal 2011; 7:293-303. [PMID: 21792575 DOI: 10.1007/s11302-011-9247-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/10/2011] [Indexed: 01/11/2023] Open
Abstract
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA(2) and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y(1) and P2Y(12) receptor subtypes, while the P2X(1) receptor ligand-gated cation channel is activated by ATP. The P2Y(1) receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y(12) receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X(1) receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.
Collapse
|
20
|
Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 2011; 7:305-24. [PMID: 21484092 DOI: 10.1007/s11302-011-9216-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022] Open
Abstract
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y(1) and P2Y(12) receptors, a P2Y(14) receptor (GPR105) of unknown function, and anti-aggregatory A(2A) and A(2B) adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure-activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y(1), P2Y(12), and P2Y(14) receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y(12) receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y(12) receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y(1) receptor or the P2Y(12) receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A(2A) AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A(2A) agonist CGS21680 and the P2Y(1) receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.
Collapse
|
21
|
Molecular pharmacology, physiology, and structure of the P2Y receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:373-415. [PMID: 21586365 DOI: 10.1016/b978-0-12-385526-8.00012-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2Y receptors are a widely expressed group of eight nucleotide-activated G protein-coupled receptors (GPCRs). The P2Y(1)(ADP), P2Y(2)(ATP/UTP), P2Y(4)(UTP), P2Y(6)(UDP), and P2Y(11)(ATP) receptors activate G(q) and therefore robustly promote inositol lipid signaling responses. The P2Y(12)(ADP), P2Y(13)(ADP), and P2Y(14)(UDP/UDP-glucose) receptors activate G(i) leading to inhibition of adenylyl cyclase and to Gβγ-mediated activation of a range of effector proteins including phosphoinositide 3-kinase-γ, inward rectifying K(+) (GIRK) channels, phospholipase C-β2 and -β3, and G protein-receptor kinases 2 and 3. A broad range of physiological responses occur downstream of activation of these receptors ranging from Cl(-) secretion by epithelia to aggregation of platelets to neurotransmission. Useful structural models of the P2Y receptors have evolved from extensive genetic analyses coupled with molecular modeling based on three-dimensional structures obtained for rhodopsin and several other GPCRs. Selective ligands have been synthesized for most of the P2Y receptors with the most prominent successes attained with highly selective agonist and antagonist molecules for the ADP-activated P2Y(1) and P2Y(12) receptors. The widely prescribed drug, clopidogrel, which results in irreversible blockade of the platelet P2Y(12) receptor, is the most important therapeutic agent that targets a P2Y receptor.
Collapse
|
22
|
Thalji RK, Aiyar N, Davenport EA, Erhardt JA, Kallal LA, Morrow DM, Senadhi S, Burns-Kurtis CL, Marino JP. Benzofuran-substituted urea derivatives as novel P2Y1 receptor antagonists. Bioorg Med Chem Lett 2010; 20:4104-7. [DOI: 10.1016/j.bmcl.2010.05.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 11/27/2022]
|
23
|
P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 2010; 15:570-8. [PMID: 20594935 DOI: 10.1016/j.drudis.2010.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/12/2010] [Accepted: 05/21/2010] [Indexed: 12/31/2022]
Abstract
Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G-protein-coupled receptors, termed P2Y. The receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease and thrombosis. On the horizon are novel treatments for cardiovascular diseases, inflammatory diseases and neurodegeneration.
Collapse
|