1
|
Affiliation(s)
- Benjamin M. Long
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Frederick M. Pfeffer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
2
|
Jorgensen WL. Autobiography of William L. Jorgensen: Scientific History and Recollections. J Phys Chem B 2015; 119:624-32. [DOI: 10.1021/jp510442j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Zhang X, Lin Y, Zhang J, Cao S. Base-mediated direct fluoroalkenylation of 2-phenyl-1,3,4-oxadiazole, benzothiazole and benzoxazole with gem-difluoroalkenes. RSC Adv 2015. [DOI: 10.1039/c4ra13761b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Direct α-fluorovinylation of 2-phenyl-1,3,4-oxadiazole, benzothiazole and benzoxazole with gem-difluoroalkenes under the assistance of KHMDS or NaH at room temperature was developed.
Collapse
Affiliation(s)
- Xuxue Zhang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- China
| | - Yingyin Lin
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- China
| | - Juan Zhang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- China
| |
Collapse
|
4
|
Chang J, Zhang SJ, Jiang YW, Xu L, Yu JM, Zhou WJ, Sun X. Design, Synthesis, and Antibacterial Activity of Demethylvancomycin Analogues against Drug-Resistant Bacteria. ChemMedChem 2013; 8:976-84. [DOI: 10.1002/cmdc.201300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/12/2013] [Indexed: 11/11/2022]
|
5
|
Leung CS, Leung SSF, Tirado-Rives J, Jorgensen WL. Methyl effects on protein-ligand binding. J Med Chem 2012; 55:4489-500. [PMID: 22500930 DOI: 10.1021/jm3003697] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of addition of a methyl group to a lead compound on biological activity are examined. A literature analysis of >2000 cases reveals that an activity boost of a factor of 10 or more is found with an 8% frequency, and a 100-fold boost is a 1 in 200 event. Four cases in the latter category are analyzed in depth to elucidate any unusual aspects of the protein-ligand binding, distribution of water molecules, and changes in conformational energetics. The analyses include Monte Carlo/free-energy perturbation (MC/FEP) calculations for methyl replacements in inhibitor series for p38α MAP kinase, ACK1, PTP1B, and thrombin. Methyl substitutions ortho to an aryl ring can be particularly effective at improving activity by inducing a propitious conformational change. The greatest improvements in activity arise from coupling the conformational gain with the burial of the methyl group in a hydrophobic region of the protein.
Collapse
Affiliation(s)
- Cheryl S Leung
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
6
|
Xie J, Okano A, Pierce JG, James RC, Stamm S, Crane CM, Boger DL. Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 2012; 134:1284-97. [PMID: 22188323 PMCID: PMC3262083 DOI: 10.1021/ja209937s] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The total synthesis of [Ψ[C(═S)NH]Tpg(4)]vancomycin aglycon (8) and its unique AgOAc-promoted single-step conversion to [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon (7), conducted on a fully deprotected substrate, are disclosed. The synthetic approach not only permits access to 7, but it also allows late-stage access to related residue 4 derivatives, alternative access to [Ψ[CH(2)NH]Tpg(4)]vancomycin aglycon (6) from a common late-stage intermediate, and provides authentic residue 4 thioamide and amidine derivatives of the vancomycin aglycon that will facilitate ongoing efforts on their semisynthetic preparation. In addition to early stage residue 4 thioamide introduction, allowing differentiation of one of seven amide bonds central to the vancomycin core structure, the approach relied on two aromatic nucleophilic substitution reactions for formation of the 16-membered diaryl ethers in the CD/DE ring systems, an effective macrolactamization for closure of the 12-membered biaryl AB ring system, and the defined order of CD, AB, and DE ring closures. This order of ring closures follows their increasing ease of thermal atropisomer equilibration, permitting the recycling of any newly generated unnatural atropisomer under progressively milder thermal conditions where the atropoisomer stereochemistry already set is not impacted. Full details of the evaluation of 7 and 8 along with several related key synthetic compounds containing the core residue 4 amidine and thioamide modifications are reported. The binding affinity of compounds containing the residue 4 amidine with the model D-Ala-D-Ala ligand 2 was found to be only 2-3 times less than the vancomycin aglycon (5), and this binding affinity is maintained with the model d-Ala-d-Lac ligand 4, representing a nearly 600-fold increase in affinity relative to the vancomycin aglycon. Importantly, the amidines display effective dual, balanced binding affinity for both ligands (K(a)2/4 = 0.9-1.05), and they exhibit potent antimicrobial activity against VanA resistant bacteria ( E. faecalis , VanA VRE) at a level accurately reflecting these binding characteristics (MIC = 0.3-0.6 μg/mL), charting a rational approach forward in the development of antibiotics for the treatment of vancomycin-resistant bacterial infections. In sharp contrast, 8 and related residue 4 thioamides failed to bind either 2 or 4 to any appreciable extent, do not exhibit antimicrobial activity, and serve to further underscore the remarkable behavior of the residue 4 amidines.
Collapse
Affiliation(s)
- Jian Xie
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Akinori Okano
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Joshua G. Pierce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Robert C. James
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Simon Stamm
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Christine M. Crane
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
7
|
Shao C, Zhou W, Zhang S, Wei W, Ruan L, Jin Y, Sun X, Huang Y. Synthesis and antibacterial activity of N4-mono alkyl derivatives of novel glycopeptide LYV07ww01. Bioorg Med Chem Lett 2011; 21:6732-8. [PMID: 21978682 DOI: 10.1016/j.bmcl.2011.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Thirty-one N(4)-mono alkyl derivatives of novel glycopeptide LYV07ww01 were synthesized by the reductive alkylation and their in vitro antibacterial activity was tested. The benzyl derivatives showed potent activity, especially against vancomycin-resistant enterococci and penicillin-resistant Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Chang Shao
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
AbstractSix complexes of vancomycin and peptidoglycan precursors were studied via molecular dynamics simulations. The interactions between the antibiotic and peptidoglycan fragments were identified and described in detail. All six studied modifications of the peptidoglycan precursor resulted in a weakening of the interaction with vancomycin when comparing to the native D-Ala-D-Ala-terminated fragment. It was confirmed that the N-terminus of the vancomycin is directly responsible for peptidoglycan recognition and antimicrobial activity. In simulated systems, the saccharide part of the antibiotic interacts with peptide precursors, thus it could also be important for antimicrobial activity. The complex terminated with D-Lac is the only one in which there is a weak interaction with the sugar moiety in the simulated systems. Analysis of conformational changes is a major scope of this work. The lack of interactions resulting from modification of the peptidoglycan precursors (D-Lac, D-Ser or other substitution) would be counterbalanced by proper modifications of the vancomycin moiety, especially the saccharide part of vancomycin.
Collapse
|
9
|
Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 2011; 21:150-60. [PMID: 21349700 DOI: 10.1016/j.sbi.2011.01.011] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 11/23/2022]
Abstract
Improved rational drug design methods are needed to lower the cost and increase the success rate of drug discovery and development. Alchemical binding free energy calculations, one potential tool for rational design, have progressed rapidly over the past decade, but still fall short of providing robust tools for pharmaceutical engineering. Recent studies, especially on model receptor systems, have clarified many of the challenges that must be overcome for robust predictions of binding affinity to be useful in rational design. In this review, inspired by a recent joint academic/industry meeting organized by the authors, we discuss these challenges and suggest a number of promising approaches for overcoming them.
Collapse
|
10
|
Crane CM, Pierce JG, Leung SSF, Tirado-Rives J, Jorgensen WL, Boger DL. Synthesis and evaluation of selected key methyl ether derivatives of vancomycin aglycon. J Med Chem 2010; 53:7229-35. [PMID: 20853900 DOI: 10.1021/jm100946e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A select series of methyl ether derivatives of vancomcyin aglycon were prepared and examined for antimicrobial activity against vancomycin-sensitive Staphylococcus aureus and vancomycin-resistant Enterococci faecalis as well as their binding affinity for D-Ala-D-Ala and D-Ala-D-Lac. The intent of the study was to elucidate the role selected key methyl groups may play in the improvement of the in vitro antimicrobial profile of the tetra methyl ether derivative of vancomycin aglycon against vancomycin-resistant Enterococci faecalis previously reported. In these studies, methodology for selective derivatization of the A-, B-, and D-ring was developed that defines the relative reactivity of the four phenols of vancomycin aglycon, providing a foundation for future efforts for site-directed modification of the vancomycin aglycon core.
Collapse
Affiliation(s)
- Christine M Crane
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
11
|
β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 2010; 28:596-604. [PMID: 20970210 DOI: 10.1016/j.tibtech.2010.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/06/2010] [Accepted: 09/20/2010] [Indexed: 01/21/2023]
Abstract
Most infections are caused by bacteria, many of which are ever-evolving and resistant to nearly all available antibiotics. β-Lactams and glycopeptides are used to combat these infections by inhibiting bacterial cell-wall synthesis. This mechanism remains an interesting target in the search for new antibiotics in light of failed genomic approaches and the limited input of major pharmaceutical companies. Several strategies have enriched the pipeline of bacterial cell-wall inhibitors; examples include combining screening strategies with lesser-explored microbial diversity, or reinventing known scaffolds based on structure-function relationships. Drugs developed using novel strategies will contribute to the arsenal in fight against the continued emergence of bacterial resistance.
Collapse
|
12
|
Highlighting the possible secondary interactions in the role of balhimycin and its analogues for enantiorecognition in capillary electrophoresis. J Chromatogr A 2009; 1217:1149-56. [PMID: 19782369 DOI: 10.1016/j.chroma.2009.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/23/2022]
Abstract
It is believed that the enantiorecognition mechanism based on macrocyclic antibiotics involves multimodal interactions via hydrogen bonding, pi-pi interaction, steric hindrance, hydrophobic interaction and so on. A variety of enantiomeric N-benzoylated amino acids were separated using balhimycin (A) or its analogues bromobalhimycin (B) and dechlorobalhimycin (C) as chiral mobile phase additive using a CE method, which combined the partial filling technique with the dynamic coating technique and the co-EOF electrophoresis technique. The enantioresolution and the migration time were highly relevant to the structure of analytes, especially to the substitutions on the N-tagged benzoyl moiety of the amino acids. A steric effect and pi-pi interaction based mechanism is proposed in order to explain some observed enantioresolution differences between positional isomers. Notably dechlorobalhimycin exhibited the best enantioresolution for several N-benzoylated derivatives of leucine, which was rarely observed for N-dansylated amino acid derivatives. The hydrophobicity difference of the aglycone pocket among three chiral selectors was assumed to account for this behaviour.
Collapse
|
13
|
Leung SSF, Tirado-Rives J, Jorgensen WL. Vancomycin analogs: Seeking improved binding of d-Ala-d-Ala and d-Ala-d-Lac peptides by side-chain and backbone modifications. Bioorg Med Chem 2009; 17:5874-86. [PMID: 19620008 PMCID: PMC2892990 DOI: 10.1016/j.bmc.2009.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/27/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
In order to seek vancomycin analogs with improved performance against VanA and VanB resistant bacterial strains, extensive computational investigations have been performed to examine the effects of side-chain and backbone modifications. Changes in binding affinities for tripeptide cell-wall precursor mimics, Ac(2)-l-Lys-d-Ala-d-Ala (3) and Ac(2)-l-Lys-d-Ala-d-Lac (4), with vancomycin analogs were computed with Monte Carlo/free energy perturbation (MC/FEP) calculations. Replacements of the 3-hydroxyl group in residue 7 with small alkyl or alkoxy groups, which improve contacts with the methyl side chain of the ligands'd-Ala residue, are predicted to be the most promising to enhance binding for both ligands. The previously reported amine backbone modification as in 5 is shown to complement the hydrophobic modifications for binding monoacetylated tripeptides. In addition, replacement of the hydroxyl groups in residues 5 and 7 by fluorine is computed to have negligible impact on binding the tripeptides, though it may be pharmacologically advantageous.
Collapse
|