1
|
Khan A, Braganza CD, Kodar K, Timmer MSM, Stocker BL. Stereochemistry, lipid length and branching influences Mincle agonist activity of monoacylglycerides. Org Biomol Chem 2020; 18:425-430. [PMID: 31774425 DOI: 10.1039/c9ob02302j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report on the synthesis of a series of enantiomerically pure linear, iso-branched, and α-branched monoacyl glycerides (MAGs) in 63-72% overall yield. The ability of the MAGs to signal through human macrophage inducible C-type lectin (hMincle) using NFAT-GFP reporter cells was explored, as was the ability of the compounds to activate human monocytes. From these studies, MAGs with an acyl chain length ≥C22 were required for Mincle activation and the production of interleukin-8 (IL-8) by human monocytes. Moreover, the iso-branched MAGs led to a more pronounced immune response compared to linear MAGs, while an α-branched MAG containing a C-32 acyl chain activated cells to a higher degree than trehalose dibehenate (TDB), the prototypical Mincle agonist. Across the compound classes, the activity of the sn-1 substituted isomers was greater than the sn-3 counterparts. None of the representative compounds were cytotoxic, thus mitigating cytotoxicity as a potential mediator of cellular activity. Taken together, 6h (sn-1, iC26+1), 8a (sn-1, C32) and 8b (sn-3, C32) exhibited the best immunostimulatory properties and thus, have potential as vaccine adjuvants.
Collapse
Affiliation(s)
- Ayesha Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
2
|
Synthesis of a Di-Mycoloyl Tri-Arabinofuranosyl Glycerol Fragment of the Mycobacterial Cell Wall, Based on Synthetic Mycolic Acids. Molecules 2019; 24:molecules24193596. [PMID: 31590468 PMCID: PMC6804083 DOI: 10.3390/molecules24193596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Fragments of mycobacterial cell walls such as arabinoglycerol mycolate and dimycoloyl diarabinoglycerol, comprising complex mixtures of mycolic acids, have immunostimulatory and antigenic properties. A related di-mycoloyl tri-arabinofuranosyl glycerol fragment has been isolated from cell wall hydrolysates. An effective stereoselective synthesis of tri-arabinofuranosyl glycerol, followed by coupling with stereochemically defined mycolic acids of different structural classes, to provide unique di-mycoloyl tri-arabinofuranosyl glycerols is now described.
Collapse
|
3
|
Ali OT, Mohammed MO, Gates PJ, Baird MS, Al Dulayymi JR. The synthesis of mycobacterial dimycoloyl diarabinoglycerol based on defined synthetic mycolic acids. Chem Phys Lipids 2019; 221:207-218. [PMID: 30639038 DOI: 10.1016/j.chemphyslip.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022]
Abstract
Complex mixtures of natural dimycoloyl diarabinoglycerols isolated from mycobacteria have been shown to be both potent immune signalling agents and potentially valuable antigens in the serodiagnosis of mycobacterial infections. We now report the highly stereocontrolled synthesis of diacyl l-glycerol-(1'→1)-β-d-arabinofuranosyl-α-d-arabinofuranosides based on simple fatty acids and single defined synthetic mycolic acids. NMR analysis confirmed that the synthetic core was identical to that in natural mixtures.
Collapse
Affiliation(s)
- Omar T Ali
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Mohsin O Mohammed
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Paul J Gates
- School of Chemistry, Bristol University, Bristol, BS8 1TS, UK
| | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Juma'a R Al Dulayymi
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
4
|
Rodrigues L, Raftopoulos KN, Tandrup Schmidt S, Schneider F, Dietz H, Rades T, Franzyk H, Pedersen AE, Papadakis CM, Christensen D, Winter G, Foged C, Hubert M. Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein. J Control Release 2018; 285:12-22. [PMID: 29964134 DOI: 10.1016/j.jconrel.2018.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/31/2023]
Abstract
Nanocarriers based on inverse hexagonal liquid crystalline phases (hexosomes) show promising potential as vaccine delivery systems. Their unique internal structure, composed of both lipophilic domains and water-containing channels, renders them capable of accommodating immunopotentiating compounds and antigens. However, their adjuvant properties are poorly understood. We hypothesized that the supramolecular structure of the lyotropic liquid crystalline phase influences the immunostimulatory activity of lipid-based nanocarriers. To test this, hexosomes were designed containing the lipid phytantriol (Phy) and the immunopotentiator monomycoloyl glycerol-1 (MMG-1). Self-assembly of Phy and MMG-1 into nanocarriers featuring an internal hexagonal phase was confirmed by small-angle X-ray scattering and cryogenic transmission electron microscopy. The effect of the nanostructure on the adjuvant activity was studied by comparing the immunogenicity of Phy/MMG-1 hexosomes with MMG-1-containing lamellar liquid crystalline nanoparticles (liposomes, CAF04). The quality and magnitude of the elicited immune responses were determined after vaccination of CB6/F1 mice using the Chlamydia trachomatis major outer membrane protein (MOMP) as antigen. MMG-1-based hexosomes potentiated significantly stronger MOMP-specific humoral responses than CAF04 liposomes. The liposome-based vaccine formulation induced a much stronger MOMP-specific cell-mediated immune response compared to hexosome-adjuvanted MOMP, which elicited minimal MOMP-specific T-cell stimulation after vaccination. Hence, our data demonstrates that hexosomal and liposomal adjuvants activate the immune system via different mechanisms. Our work provides valuable insights into the adjuvant potential of hexosomes and emphasizes that engineering of the supramolecular structure can be used to design adjuvants with customized immunological properties.
Collapse
Affiliation(s)
- Letícia Rodrigues
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany
| | - Konstantinos N Raftopoulos
- Physics Department, Soft Matter Physics Group, Technische Universität München, James-Franck-Straße 1, DE-85748 Garching, Germany
| | - Signe Tandrup Schmidt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Infectious Disease Immunology, Vaccine Adjuvant Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Fabian Schneider
- Physics Department, Institute for Advanced Study, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, DE-85748 Garching, Germany
| | - Hendrik Dietz
- Physics Department, Institute for Advanced Study, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, DE-85748 Garching, Germany
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Christine M Papadakis
- Physics Department, Soft Matter Physics Group, Technische Universität München, James-Franck-Straße 1, DE-85748 Garching, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Vaccine Adjuvant Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Madlen Hubert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany.
| |
Collapse
|
5
|
Braganza CD, Teunissen T, Timmer MSM, Stocker BL. Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands. Front Immunol 2018; 8:1940. [PMID: 29387054 PMCID: PMC5776103 DOI: 10.3389/fimmu.2017.01940] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 11/15/2022] Open
Abstract
The macrophage inducible C-type lectin (Mincle) is a pattern recognition receptor able to recognize both damage-associated and pathogen-associated molecular patterns, and in this respect, there has been much interest in determining the scope of ligands that bind Mincle and how structural modifications to these ligands influence ensuing immune responses. In this review, we will present Mincle ligands of known chemical structure, with a focus on ligands that have been synthetically prepared, such as trehalose glycolipids, glycerol-based ligands, and 6-acylated glucose and mannose derivatives. The ability of the different classes of ligands to influence the innate, and consequently, the adaptive, immune response will be described, and where appropriate, structure-activity relationships within each class of Mincle ligands will be presented.
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas Teunissen
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Abstract
R- and S-Glycerol mycolates derived from single synthetic α-, keto- and methoxy-mycolic acids are described.
Collapse
Affiliation(s)
- Omar T Ali
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | - Mohaned M Sahb
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | | | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK.
| |
Collapse
|
7
|
Tima HG, Huygen K, Romano M. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines. Expert Rev Vaccines 2016; 15:1409-1420. [PMID: 27206681 DOI: 10.1080/14760584.2016.1187067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Hermann Giresse Tima
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Kris Huygen
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Marta Romano
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| |
Collapse
|
8
|
Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev 2016; 99:85-96. [PMID: 26576719 DOI: 10.1016/j.addr.2015.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.
Collapse
|
9
|
Mohammed MO, Baird MS, Al Dulayymi JR. Mycolyl arabino glycerols from synthetic mycolic acids. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
van der Peet PL, Gunawan C, Torigoe S, Yamasaki S, Williams SJ. Corynomycolic acid-containing glycolipids signal through the pattern recognition receptor Mincle. Chem Commun (Camb) 2015; 51:5100-3. [DOI: 10.1039/c5cc00085h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose monocorynomycolate is revealed to signal through both mouse and human Mincle. Glycerol monocorynomycolate is shown to selectively signal through human Mincle, with the activity residing predominantly in the 2′S-isomer.
Collapse
Affiliation(s)
- Phillip L. van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Australia
| | - Christian Gunawan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Australia
| | - Shota Torigoe
- Division of Molecular Immunology
- Medical Institute of Bioregulation
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Sho Yamasaki
- Division of Molecular Immunology
- Medical Institute of Bioregulation
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Australia
| |
Collapse
|
11
|
Korsholm KS, Hansen J, Karlsen K, Filskov J, Mikkelsen M, Lindenstrøm T, Schmidt ST, Andersen P, Christensen D. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 2014; 32:3927-35. [PMID: 24877765 DOI: 10.1016/j.vaccine.2014.05.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/11/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022]
Abstract
Vaccines inducing cytotoxic T-cell responses are required to achieve protection against cancers and intracellular infections such as HIV and Hepatitis C virus. Induction of CD8+ T cell responses in animal models can be achieved by the use of viral vectors or DNA vaccines but so far without much clinical success. Here we describe the novel CD8+ T-cell inducing adjuvant, cationic adjuvant formulation (CAF) 09, consisting of dimethyldioctadecylammonium (DDA)-liposomes stabilized with monomycoloyl glycerol (MMG)-1 and combined with the TLR3 ligand, Poly(I:C). Different antigens from tuberculosis (TB10.3, H56), HIV (Gag p24), HPV (E7) and the model antigen ovalbumin were formulated with CAF09 and administering these vaccines to mice resulted in a high frequency of antigen-specific CD8+ T cells. CAF09 was superior in its ability to induce antigen-specific CD8+ T cells as compared to other previously described CTL-inducing adjuvants, CAF05 (DDA/trehalose dibehenate (TDB)/Poly(I:C)), Aluminium/monophosphoryl lipid-A (MPL) and Montanide/CpG/IL-2. The optimal effect was obtained when the CAF09-adjuvanted vaccine was administered by the i.p. route, whereas s.c. administration primed limited CD8+ T-cell responses. The CD4+ T cells induced by CAF09 were mainly of an effector-memory-like phenotype and the CD8+ T cells were highly cytotoxic. Finally, in a mouse therapeutic skin tumor model, the HPV-16 E7 antigen formulated in CAF09 significantly reduced the growth of already established subcutaneous E7-expressing TC-1 tumors in 38% of the mice and in a corresponding prophylactic model 100% of the mice were protected. Thus, CAF09 is a potent new adjuvant which is able to induce CD8+ T-cell responses against several antigens and to enhance the protective efficacy of an E7 vaccine both in a therapeutic and in a prophylactic tumor model.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Jon Hansen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Kasper Karlsen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Jonathan Filskov
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Marianne Mikkelsen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Thomas Lindenstrøm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Signe Tandrup Schmidt
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
12
|
Hubert M, Larsen DS, Hayman CM, Rades T, Hook S. Physical Characterization of Synthetic Phosphatidylinositol Dimannosides and Analogues in Binary Systems with Phosphatidylcholine. Mol Pharm 2014; 11:913-21. [DOI: 10.1021/mp400588y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Colin M. Hayman
- Carbohydrate
Chemistry Team, Callaghan Innovation, P.O. Box 31-310, Lower Hutt, New Zealand
| | - Thomas Rades
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
13
|
Martin-Bertelsen B, Korsholm KS, Rose F, Nordly P, Franzyk H, Andersen P, Agger EM, Christensen D, Yaghmur A, Foged C. The supramolecular structure is decisive for the immunostimulatory properties of synthetic analogues of a mycobacterial lipid in vitro. RSC Adv 2013. [DOI: 10.1039/c3ra42737d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2011; 10:513-21. [PMID: 21506648 DOI: 10.1586/erv.11.17] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
15
|
Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv 2011; 8:505-19. [DOI: 10.1517/17425247.2011.558081] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur J Pharm Biopharm 2010; 77:89-98. [PMID: 20940050 DOI: 10.1016/j.ejpb.2010.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
The combination of delivery systems such as cationic liposomes and immunopotentiating molecules is a promising approach for the rational design of vaccine adjuvants. In this study, a synthetic analogue of the mycobacterial lipid monomycoloyl glycerol (MMG), referred to as MMG-1, was synthesized and combined with the cationic surfactant dimethyldioctadecylammonium (DDA). The purpose of the study was to provide a thorough pharmaceutical characterization of the resulting DDA/MMG-1 binary system and to evaluate how incorporation of MMG-1 affected the adjuvant activity of DDA liposomes. Thermal analyses demonstrated that MMG-1 was incorporated into the DDA lipid bilayers, and cryo-transmission electron microscopy (TEM) confirmed that liposomes were formed. The particles had a polydisperse size distribution and an average diameter of approximately 400 nm. Evaluation of the colloidal stability indicated that at least 18 mol% MMG-1 was required to stabilize the DDA liposomes as the average particle size remained constant during storage for 6 months. The improved colloidal stability is most likely caused by increased hydration of the lipid bilayer. This was demonstrated by studying Langmuir-Blodgett monolayers of DDA and MMG-1 which revealed an increased surface pressure in the presence of high concentrations of MMG-1 when the DDA/MMG-1 monolayers were fully compressed, indicating an increased interaction with water due to enhanced hydration of the lipid head groups. Finally, immunization of mice with the tuberculosis fusion antigen Ag85B-ESAT-6 and DDA/MMG-1 liposomes induced a strong cell-mediated immune response characterized by a mixed Th1/Th17 profile and secretion of IgG1 and IgG2c antibodies. The Th1/Th17-biased immunostimulatory effect was increased in an MMG-1 concentration-dependent manner with maximal observed effect at 31 mol% MMG-1. Thus, incorporation of 31 mol% MMG-1 into DDA liposomes results in an adjuvant system with favorable physical as well as immunological properties.
Collapse
|
17
|
Henriksen-Lacey M, Bramwell V, Perrie Y. Radiolabelling of Antigen and Liposomes for Vaccine Biodistribution Studies. Pharmaceutics 2010; 2:91-104. [PMID: 27721345 PMCID: PMC3986709 DOI: 10.3390/pharmaceutics2020091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/13/2022] Open
Abstract
A relatively simple and effective method to follow the movement of pharmaceutical preparations such as vaccines in biodistribution studies is to radiolabel the components. Whilst single radiolabelling is common practice, in vaccine systems containing adjuvants the ability to follow both the adjuvant and the antigen is favourable. To this end, we have devised a dual-radiolabelling method whereby the adjuvant (liposomes) is labelled with 3H and the antigen (a subunit protein) with 125I. This model is stable and reproducible; we have shown release of the radiolabels to be negligible over periods of up to 1 week in foetal calf serum at 37 °C. In this paper we describe the techniques which enable the radiolabelling of various components, assessing stability and processing of samples which all for their application in biodistribution studies. Furthermore we provide examples derived from our studies using this model in tuberculosis vaccine biodistribution studies.
Collapse
Affiliation(s)
- Malou Henriksen-Lacey
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Vincent Bramwell
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Yvonne Perrie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
18
|
Andersen CAS, Rosenkrands I, Olsen AW, Nordly P, Christensen D, Lang R, Kirschning C, Gomes JM, Bhowruth V, Minnikin DE, Besra GS, Follmann F, Andersen P, Agger EM. Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guérin. THE JOURNAL OF IMMUNOLOGY 2009; 183:2294-302. [DOI: 10.4049/jimmunol.0804091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|