1
|
Zheng W, Feng S, Hu C. Production of Oximes Directly from Sustainable Lignocellulose-Derived Aldehydes and Ammonia over HTS-1 Catalyst. CHEMSUSCHEM 2024; 17:e202301364. [PMID: 37889199 DOI: 10.1002/cssc.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Oxime chemicals are the building blocks of many anticancer drugs and widely used in industry and laboratory. A simple but robust hierarchically porous zeolite (HTS-1) catalyst was prepared by hydrothermal methods and used for the preparation of vanillin oxime from vanillin in NH3 ⋅ H2 O/DIO (v/v 1/10) system. The results of the catalyst characterization showed that the larger pore size and more framework Ti were conducive to promote the transformation of the substrates. The conversion of vanillin and the yield of vanillin oxime were both higher than 99 % under optimized reaction conditions. It was found that the reaction proceeded by oxidation of NH3 to hydroxylamine (NH2 OH), and oximation of hydroxylamine with vanillin to obtain vanillin oxime, where the rate-controlling step was the hydroxylamine formation, and the apparent activation energy was 26.22 kJ/mol. The corresponding oximation products could also be obtained by extending this method to other compounds derived from lignin. Furthermore, the catalytic system was used directly to the conversion of birch biomass to obtain oxime products such as vanillin oxime, syringaldehyde oxime, and furfural oxime etc. This work might give insights into the sustainable production of N-containing high-value products from lignocellulose.
Collapse
Affiliation(s)
- Wanping Zheng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Shanshan Feng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Changwei Hu
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
2
|
Ibrahim MM, Jäger V, Frey W, Ali BF. Synthesis and characterization of (1′S)-3- (1′,2′-O-isopropylidenedioxyethyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole and its isoxazolidine-3-carbonitrile derivatives. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett 2019; 21:9300-9305. [PMID: 31713430 DOI: 10.1021/acs.orglett.9b03306] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is an unprecedented synthesis of isoxazolines and oxazines through electrochemical intermolecular annulation of alkenes with tert-butyl nitrite, in which diazo compounds serve as radical acceptors. Notably, [2 + 1 + 2] and [2 + 1 + 3] annulations occur when styrenes and allylbenzenes are used as substrates, respectively. The latter reaction undergoes group migration to form more stable radical, manifesting radical route instead of conventional 1,3-dipolar cycloaddition occurs. Moreover, scale-up experiments suggest the potential application value of these transformations in industry.
Collapse
Affiliation(s)
- Mingteng Xiong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Xiao Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Zhan Gao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| |
Collapse
|
6
|
Ye C, Kou X, Yang G, Shen J, Zhang W. PhI(OAc)2-mediated alkoxyoxygenation of β,γ-unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Preeti P, Singh KN. Multicomponent reactions: a sustainable tool to 1,2- and 1,3-azoles. Org Biomol Chem 2018; 16:9084-9116. [DOI: 10.1039/c8ob01872c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review outlines the recent advancements and pioneering efforts on the synthesis of 1,2/1,3-azoles employing a multicomponent strategy.
Collapse
Affiliation(s)
- Preeti Preeti
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Krishna Nand Singh
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
8
|
Chen R, Zhao Y, Fang S, Long W, Sun H, Wan X. Coupling Reaction of Cu-Based Carbene and Nitroso Radical: A Tandem Reaction To Construct Isoxazolines. Org Lett 2017; 19:5896-5899. [DOI: 10.1021/acs.orglett.7b02885] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rongxiang Chen
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shangwen Fang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wenhao Long
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hongmei Sun
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg Med Chem 2017; 25:5396-5406. [PMID: 28789907 DOI: 10.1016/j.bmc.2017.07.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1H NMR, 13C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors.
Collapse
|
10
|
Kashiwazaki G, Maeda R, Kawase T, Hashiya K, Bando T, Sugiyama H. WITHDRAWN: Evaluation of alkylating pyrrole-imidazole polyamide conjugates by a novel method for high-throughput sequencer. Bioorg Med Chem 2017:S0968-0896(17)31427-X. [PMID: 29884583 DOI: 10.1016/j.bmc.2017.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Rina Maeda
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Nakaadachi-cho, Yoshida, Sakyo, Kyoto 606-8306, Japan
| | - Takashi Kawase
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi 36-1, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiya-cho, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Athira C, Sunoj RB. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone. Org Biomol Chem 2016; 15:246-255. [PMID: 27901171 DOI: 10.1039/c6ob02318e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.
Collapse
Affiliation(s)
- C Athira
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
12
|
Reddy GM, Garcia JR, Reddy VH, de Andrade AM, Camilo A, Pontes Ribeiro RA, de Lazaro SR. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur J Med Chem 2016; 123:508-513. [PMID: 27494167 DOI: 10.1016/j.ejmech.2016.07.062] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022]
Abstract
Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy.
Collapse
Affiliation(s)
| | - Jarem Raul Garcia
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil.
| | | | - Ageo Meier de Andrade
- Group of Chemical Simulation, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Alexandre Camilo
- Group of Chemical Simulation, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | | | | |
Collapse
|
13
|
Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. ARAB J CHEM 2015. [DOI: 10.1016/j.arabjc.2014.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Gao M, Li Y, Gan Y, Xu B. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ2-Isoxazolines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Gao M, Li Y, Gan Y, Xu B. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ(2)-Isoxazolines. Angew Chem Int Ed Engl 2015; 54:8795-9. [PMID: 26088206 DOI: 10.1002/anie.201503393] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022]
Abstract
An efficient method for the regioselective synthesis of pharmacologically relevant polysubstituted Δ(2)-isoxazolines is based on the copper-mediated direct transformation of simple terminal alkynes and alkenes. The overall process involves the formation of four chemical bonds with inexpensive and readily available copper nitrate trihydrate as a novel precursor of nitrile oxides. The reaction can be easily handled and proceeds under mild conditions.
Collapse
Affiliation(s)
- Mingchun Gao
- School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444 (China) http://www.xubin.shu.edu.cn
| | - Yingying Li
- School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444 (China) http://www.xubin.shu.edu.cn
| | - Yuansheng Gan
- School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444 (China) http://www.xubin.shu.edu.cn
| | - Bin Xu
- School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444 (China) http://www.xubin.shu.edu.cn. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China). .,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062 (China).
| |
Collapse
|
16
|
Chen JR, Hu XQ, Lu LQ, Xiao WJ. Formal [4+1] Annulation Reactions in the Synthesis of Carbocyclic and Heterocyclic Systems. Chem Rev 2015; 115:5301-65. [DOI: 10.1021/cr5006974] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Rong Chen
- Key Laboratory
of Pesticide
and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Xiao-Qiang Hu
- Key Laboratory
of Pesticide
and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Liang-Qiu Lu
- Key Laboratory
of Pesticide
and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Key Laboratory
of Pesticide
and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
17
|
|
18
|
Trofimov BA, Schmidt EY. Reactions of acetylenes in superbasic media. Recent advances. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n07abeh004425] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Liu K, Wu X, Kan SBJ, Shirakawa S, Maruoka K. Phase-Transfer-Catalyzed Asymmetric Synthesis of Axially Chiral Anilides. Chem Asian J 2013; 8:3214-21. [DOI: 10.1002/asia.201301036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Indexed: 11/06/2022]
|
20
|
Kawai H, Okusu S, Tokunaga E, Shibata N. Enantioselective Synthesis of 5-Trifluoromethyl-2-isoxazolines and TheirN-Oxides by [Hydroxy(tosyloxy)iodo]benzene-Mediated Oxidative N-O Coupling. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents. Bioorg Med Chem Lett 2013; 23:4358-61. [DOI: 10.1016/j.bmcl.2013.05.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/24/2013] [Indexed: 11/15/2022]
|
22
|
Synthesis and biological evaluation of some novel urea and thiourea derivatives of isoxazolo[4,5-d]pyridazine and structurally related thiazolo[4,5-d]pyridazine as antimicrobial agents. Arch Pharm Res 2013; 36:1354-68. [PMID: 23657806 DOI: 10.1007/s12272-013-0144-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
Abstract
This study reports the synthesis of some novel isoxazolo[4,5-d]pyridazines and structurally related thiazolo[4,5-d]pyridazines, and their biological evaluation as antimicrobial agents. The proposed compounds were designed to contain pharmacophores such as urea, thiourea, sulfonylurea (thiourea) and some derived functionalities that are believed to contribute to the anticipated biological activities. The results revealed that 25 compounds displayed broad spectrum of antibacterial activity, with greater inhibitory effect on the growth of the tested Gram positive strains compared to Gram negative ones. Moreover, 14 compounds were able to produce appreciable growth inhibitory activity against Candida albicans fungus when compared to Clotrimazole. Most of the tested isoxazolo[4,5-d]pyridazines displayed better antimicrobial profile than their corresponding thiazolo[4,5-d]pyridazine congeners. Four compounds namely, p-(3,7-dimethyl-4-oxo-4H-isoxazolo [4,5-d]pyridazine-5-yl)benzenesulfonylthioureas (11c-d), 3-substituted-2-[p-(3,7-dimethyl-4-oxo-4H-isoxazolo[4,5-d]pyridazine-5-yl)-benzene-sufonylimino]-4-oxothiazolidines (13d) and p-(2,7-dimethyl-4-oxo-4H-thiazolo[4,5-d]pyridazin-5-yl)benzenesulfonylthiourea (24c) were found to be most active antimicrobial members in present study.
Collapse
|
23
|
Palumbo Piccionello A, Guarcello A, Pace A, Buscemi S. Synthesis of Isoxazoline Derivatives through Boulton-Katritzky Rearrangement of 1,2,4-Oxadiazoles. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
|
25
|
Michalska K, Karpiuk I, Król M, Tyski S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg Med Chem 2012; 21:577-91. [PMID: 23273607 DOI: 10.1016/j.bmc.2012.11.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022]
Abstract
The oxazolidinones are a new and potent class of antimicrobial agents with activity mainly against Gram-positive strains. The commercial success of linezolid, the only FDA-approved oxazolidinone, has prompted many pharmaceutical companies to devote resources to this area of investigation. Until now, four types of chemical modifications of linezolid and oxazolidinone-type antibacterial agents, including modification on each of the A-(oxazolidinone), B-(phenyl), and C-(morpholine) rings as well as the C-5 side chain of the A-ring substructure, have been described. Division into sections according to side chain modification or the type of ring will be used throughout this review, although the process of synthesis usually involves the simultaneous modification of several elements of the linezolid substructure; therefore, assignment into the appropriate section depends on the structure-activity relationships (SAR) studies. This review makes an attempt to summarise the work carried out in the period from 2006 until mid-2012.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| | | | | | | |
Collapse
|
26
|
Jorge SD, Palace-Berl F, Masunari A, Cechinel CA, Ishii M, Pasqualoto KFM, Tavares LC. Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: Design using Topliss’ decision tree, synthesis and biological assay. Bioorg Med Chem 2011; 19:5031-8. [DOI: 10.1016/j.bmc.2011.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/08/2011] [Accepted: 06/12/2011] [Indexed: 11/17/2022]
|
27
|
Amine nucleophilic addition to nitroalkene as a new practical approach for the synthesis of fully substituted isoxazoline-N-oxide. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Zhong C, Gautam L, Petersen J, Akhmedov N, Shi X. Concise Asymmetric Synthesis of Fully Substituted Isoxazoline-N-Oxide through Lewis Base Catalyzed Nitroalkene Activation. Chemistry 2010; 16:8605-9. [DOI: 10.1002/chem.201001237] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|