1
|
Nosek V, Míšek J. Sulfinamide Crossover Reaction. J Org Chem 2024; 89:7927-7932. [PMID: 38785122 PMCID: PMC11165587 DOI: 10.1021/acs.joc.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
This study unveils a new catalytic crossover reaction of sulfinamides. Leveraging mild acid catalysis, the reaction demonstrates a high tolerance to structural variations, yielding equimolar products across diverse sulfinamide substrates. Notably, small sulfinamide libraries can be selectively oxidized to sulfonamides, providing a new platform for ligand optimization and discovery in medicinal chemistry. This crossover chemotype provides a new tool for high-throughput experimentation in discovery chemistry.
Collapse
Affiliation(s)
- Vladimír Nosek
- Department of Organic Chemistry, Faculty
of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty
of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| |
Collapse
|
2
|
El-Azab AS, A.-M. Abdel-Aziz A, Bua S, Nocentini A, Bakheit AH, Alkahtani HM, Hefnawy MM, Supuran CT. Design, synthesis, and carbonic anhydrase inhibition activities of Schiff bases incorporating benzenesulfonamide scaffold: Molecular docking application. Saudi Pharm J 2023; 31:101866. [PMID: 38033749 PMCID: PMC10682911 DOI: 10.1016/j.jsps.2023.101866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.
Collapse
Affiliation(s)
- Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T. Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Zagiel B, Peker T, Marquant R, Cazals G, Webb G, Miclet E, Bich C, Sachon E, Moumné R. Dynamic Amino Acid Side‐Chains Grafting on Folded Peptide Backbone**. Chemistry 2022; 28:e202200454. [DOI: 10.1002/chem.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Zagiel
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Taleen Peker
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Rodrigue Marquant
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Guillaume Cazals
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Gabrielle Webb
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Emeric Miclet
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Emmanuelle Sachon
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
- MS3 U platform UFR 926 UFR 927 Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Roba Moumné
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| |
Collapse
|
4
|
Su D, Zhang Y, Ulrich S, Barboiu M. Constitutional Dynamic Inhibition/Activation of Carbonic Anhydrases. Chempluschem 2021; 86:1500-1510. [PMID: 34327867 DOI: 10.1002/cplu.202100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 12/23/2022]
Abstract
In this review we consider one important member of the metalloenzymes family, the carbonic anhydrase (CA), involved in the treatment of several common diseases. Different approaches have emerged to regulate the activity of CA, mostly acting on the inner catalytic active site or outer microenvironment of the enzyme, leading to inhibition or activation of CA. In recent years, gradually increased attention has focused on the adoption of constitutional dynamic chemistry (CDC) strategies for the screening and discovery of potent inhibitors or activators. The participation of reversible covalent bonds enabled the enzyme itself to select the optimal ligands obtained from diverse building blocks with comparatively higher degree of variety, resulting in the fittest recognition of enzyme ligands from complex dynamic systems. With the increasing implementation of CDC for enzyme targets, it shows great potential for drug discovery or CO2 capture applications.
Collapse
Affiliation(s)
- Dandan Su
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
5
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA‐Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| |
Collapse
|
6
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA-Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020; 59:14965-14972. [PMID: 32436364 DOI: 10.1002/anie.202005070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 11/11/2022]
Abstract
Dynamic combinatorial libraries (DCLs) is a powerful tool for ligand discovery in biomedical research; however, the application of DCLs has been hampered by their low diversity. Recently, the concept of DNA encoding has been employed in DCLs to create DNA-encoded dynamic libraries (DEDLs); however, all current DEDLs are limited to fragment identification, and a challenging process of fragment linking is required after selection. We report an anchor-directed DEDL approach that can identify full ligand structures from large-scale DEDLs. This method is also able to convert unbiased libraries into focused ones targeting specific protein classes. We demonstrated this method by selecting DEDLs against five proteins, and novel inhibitors were identified for all targets. Notably, several selective BD1/BD2 inhibitors were identified from the selections against bromodomain 4 (BRD4), an important anti-cancer drug target. This work may provide a broadly applicable method for inhibitor discovery.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology China, 1088 Xueyuan Road, Shenzhen, China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
7
|
van der Vlag R, Yagiz Unver M, Felicetti T, Twarda‐Clapa A, Kassim F, Ermis C, Neochoritis CG, Musielak B, Labuzek B, Dömling A, Holak TA, Hirsch AKH. Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination. ChemMedChem 2020; 15:370-375. [PMID: 31774938 PMCID: PMC7064911 DOI: 10.1002/cmdc.201900574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.
Collapse
Affiliation(s)
- Ramon van der Vlag
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Tommaso Felicetti
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo 106123PerugiaItaly
| | | | - Fatima Kassim
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Cagdas Ermis
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Constantinos G. Neochoritis
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
- Chemistry departmentUniversity of Crete70013HeraklionGreece
| | - Bogdan Musielak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Alexander Dömling
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
8
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, Alanazi MM, AlSaif NA, Al-Suwaidan IA, Hefnawy MM, Supuran CT. Synthesis and comparative carbonic anhydrase inhibition of new Schiff's bases incorporating benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. Bioorg Chem 2019; 92:103225. [PMID: 31493707 DOI: 10.1016/j.bioorg.2019.103225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023]
Abstract
Herein, we report the synthesis, characterization, and carbonic anhydrase (CA) inhibition of the newly synthesized Schiff's bases 4-18 with benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. The compound inhibition profiles against human CA (hCA) isoforms I, II, IX, and XII were compared to those of the standard inhibitors, acetazolamide (AAZ) and SLC-0111 (a CA inhibitor in Phase II clinical trials for the treatment of hypoxic tumors). The hCA I was inhibited by compounds 4a-8a with inhibition constants (KI) in the range 93.5-428.1 nM (AAZ and SLC-0111: KI, 250.0 and 5080.0 nM, respectively). Compounds 4a-8a proved to be effective hCA II inhibitors, with KI ranging from 18.2 to 133.3 nM (AAZ and SLC-0111: KI, 12.0 and 960.0 nM, respectively). Compounds 4a-8a effectively inhibited hCA IX, with KI in the range 8.5-24.9 nM; these values are superior or equivalent to that of AAZ and SLC-0111 (KI, 25.0 and 45.0 nM, respectively). Compounds 4a-8a displayed effective hCA XII inhibitory activity with KI values ranging from 8.6 to 43.2 nM (AAZ and SLC-0111: KI, 5.7 and 4.5 nM, respectively). However, compounds 9b-13b and 14c-18c were found to be micromolar CA inhibitors. For molecular docking studies, compounds 5a, 6a, and 8a were selected.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates. Bioorg Chem 2019; 89:103013. [DOI: 10.1016/j.bioorg.2019.103013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023]
|
10
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
11
|
Tektas O, Akkemik E, Baykara H. Investigation of the Effect of Some Optically Active Imine Compounds on the Enzyme Activities of hCA-I and hCA-II under In Vitro Conditions: An Experimental and Theoretical Study. J Biochem Mol Toxicol 2016; 30:277-86. [DOI: 10.1002/jbt.21788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Osman Tektas
- Department of Chemistry, Faculty of Arts and Sciences; Siirt University; 56100 Siirt Turkey
| | - Ebru Akkemik
- Faculty of Engineering and Architecture, Food Engineering; Siirt University; 56100 Siirt Turkey
| | - Haci Baykara
- Department of Chemistry, Faculty of Arts and Sciences; Siirt University; 56100 Siirt Turkey
- Center of Nanotechnology Research and Development (CIDNA), Facultad de Ingeniería Mecánica y Ciencias de la Producción; Escuela Superior Politécnica del Litoral, ESPOL; Campus Gustavo Galindo Km 30.5 Vía Perimetral Guayaquil Ecuador
| |
Collapse
|
12
|
Kulchat S, Lehn JM. Dynamic Covalent Chemistry of Nucleophilic Substitution Component Exchange of Quaternary Ammonium Salts. Chem Asian J 2015. [DOI: 10.1002/asia.201500604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sirinan Kulchat
- Laboratoire de Chimie Supramoléculaire, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
13
|
Ceruso M, Carta F, Osman SM, Alothman Z, Monti SM, Supuran CT. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg Med Chem 2015; 23:4181-4187. [DOI: 10.1016/j.bmc.2015.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
|
14
|
Zhang Y, Barboiu M. Constitutional Dynamic Materials—Toward Natural Selection of Function. Chem Rev 2015; 116:809-34. [DOI: 10.1021/acs.chemrev.5b00168] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- Adaptive Supramolecular Nanosystems
Group, Institut Européen des Membranes—UMR CNRS 5635, Place Eugène
Bataillon, CC 047, F-34095 Montpellier, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems
Group, Institut Européen des Membranes—UMR CNRS 5635, Place Eugène
Bataillon, CC 047, F-34095 Montpellier, France
| |
Collapse
|
15
|
Güzel-Akdemir Ö, Akdemir A, Karalı N, Supuran CT. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org Biomol Chem 2015; 13:6493-9. [PMID: 25967275 DOI: 10.1039/c5ob00688k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A series of 2/3/4-[(2-oxo-1,2-dihydro-3H-indol-3-ylidene)amino]benzenesulfonamides, obtained from substituted isatins and 2-, 3- or 4-aminobenzenesulfonamide, showed low nanomolar inhibitory activity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII - recently validated antitumor drug targets, being much less effective as inhibitors of the off-target cytosolic isoforms CA I and II.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Beyazıt, Istanbul, Turkey
| | | | | | | |
Collapse
|
16
|
Ouari K, Merzougui M, Bendia S, Bailly C. Crystal structure of 1,1'-{(dodecane-1,12-di-yl)bis-[(aza-niumylyl-idene)methanylyl-idene]}bis-(naphthalen-2-olate). Acta Crystallogr E Crystallogr Commun 2015; 71:o351-2. [PMID: 25995943 PMCID: PMC4420129 DOI: 10.1107/s2056989015007938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022]
Abstract
The title compound, C34H40N2O2, exists in an extended conformation and has crystallographically imposed centrosymmetry. The crystal packing can be described as being composed of parallel layers stacked along [010]. The zwitterionic structure is stabilized by an intra-molecular N-H⋯O hydrogen-bond inter-action.
Collapse
Affiliation(s)
- Kamel Ouari
- Laboratoire d’Electrochimie, d’Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif, 19000 Sétif, Algeria
| | - Moufida Merzougui
- Laboratoire d’Electrochimie, d’Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif, 19000 Sétif, Algeria
| | - Sabrina Bendia
- Laboratoire d’Electrochimie, d’Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif, 19000 Sétif, Algeria
| | - Corinne Bailly
- Service de Radiocristallographie, Institut de Chimie de Strasbourg, UMR 7177 CNRS–Unistra, 1 rue Blaise Pascal, Strasbourg 67008, France
| |
Collapse
|
17
|
Durgun M, Turkmen H, Ceruso M, Supuran CT. Synthesis of Schiff base derivatives of 4-(2-aminoethyl)-benzenesulfonamide with inhibitory activity against carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem Lett 2015; 25:2377-81. [PMID: 25913118 DOI: 10.1016/j.bmcl.2015.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 11/26/2022]
Abstract
Schiff base derivatives were obtained by reaction of 4-(2-aminoethyl)benzenesulfonamide with aromatic aldehydes. The corresponding secondary amine derivatives were also prepared by reduction of the imine compounds with NaBH4. These derivatives were investigated as inhibitors of four human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic isozymes hCA I and II, as well as, the transmembrane, tumor-associated hCA IX and XII. Some of the newly synthesised compounds showed effective inhibitory activities against these CA isozymes. Many low nanomolar inhibitors were detected against all isoforms among the secondary amines whereas the Schiff bases were by far less active compared to the corresponding reduced derivatives among all investigated isoforms.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63190 Sanliurfa, Turkey.
| | - Hasan Turkmen
- Department of Medical Pharmacology, Faculty of Medicine, Harran University, 63190 Sanliurfa, Turkey
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; Università degli Studi di Firenze, Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
18
|
Singasane N, Kharkar PS, Ceruso M, Supuran CT, Toraskar MP. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with Schiff’s bases incorporating iminoureido moieties. J Enzyme Inhib Med Chem 2015; 30:901-7. [PMID: 25744513 DOI: 10.3109/14756366.2014.986118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Namrata Singasane
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, India
| | - Prashant S. Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India
| | - Mariangela Ceruso
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy, and
- Neurofarba Department, Sezione di Scienze Farmaceutiche, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy, and
- Neurofarba Department, Sezione di Scienze Farmaceutiche, Sesto Fiorentino (Firenze), Italy
| | - Mrunmayee P. Toraskar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, India
| |
Collapse
|
19
|
Mondal M, Hirsch AKH. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem Soc Rev 2015; 44:2455-88. [DOI: 10.1039/c4cs00493k] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynamic combinatorial chemistry enables efficient identification of protein binder(s) from a library of interconverting compounds. The library responds to the addition of the target by amplifying the strongest binder.
Collapse
Affiliation(s)
- Milon Mondal
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
20
|
Sarikaya B, Ceruso M, Carta F, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: Identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. Bioorg Med Chem 2014; 22:5883-90. [DOI: 10.1016/j.bmc.2014.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/24/2022]
|
21
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
22
|
Peremezhney N, Jacob PM, Lapkin A. Alternative methods of processing bio-feedstocks in formulated consumer product design. Front Chem 2014; 2:26. [PMID: 24860803 PMCID: PMC4026751 DOI: 10.3389/fchem.2014.00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
In this work new methods of processing bio-feedstocks in the formulated consumer products industry are discussed. Our current approach to formulated products design is based on heuristic knowledge of formulators that allows selecting individual compounds from a library of available materials with known properties. We speculate that most of the compounds (or functions) that make up the product to be designed can potentially be obtained from a few bio-sources. In this case, it may be possible to design a sequence of transformations required to convert feedstocks into products with desired properties, analogous to a metabolic pathway of a complex organism. We conceptualize some novel approaches to processing bio-feedstocks with the aim of bypassing the step of a fixed library of ingredients. Two approaches are brought forward: one making use of knowledge-based expert systems and the other making use of applications of metabolic engineering and dynamic combinatorial chemistry.
Collapse
Affiliation(s)
- Nicolai Peremezhney
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge, UK
| | | | - Alexei Lapkin
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge, UK
| |
Collapse
|
23
|
Nasr G, Cristian A, Barboiu M, Vullo D, Winum JY, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff’s bases incorporating sulfonamide, carboxylate and carboxymethyl moieties. Bioorg Med Chem 2014; 22:2867-74. [DOI: 10.1016/j.bmc.2014.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
|
24
|
Matache M, Bogdan E, Hădade ND. Selective Host Molecules Obtained by Dynamic Adaptive Chemistry. Chemistry 2014; 20:2106-31. [DOI: 10.1002/chem.201303504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Ulrich S, Dumy P. Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. Chem Commun (Camb) 2014; 50:5810-25. [DOI: 10.1039/c4cc00263f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Abdelrahim MYM, Tanc M, Winum JY, Supuran CT, Barboiu M. Dominant behaviours in the expression of human carbonic anhydrase hCA I activity. Chem Commun (Camb) 2014; 50:8043-6. [DOI: 10.1039/c4cc03289f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic deconvolution ofDCLsof inhibitors (CAIs) and activators (CAAs) of hCA I show that the inhibitory effects dominate over the activating ones.
Collapse
Affiliation(s)
- M. Yahia M. Abdelrahim
- Adaptative Supramolecular Nanosystems Group
- Institut Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5, France
| | - Muhammet Tanc
- Università degli Studi di Firenze
- Polo Scientifico, Laboratorio di Chimica Bioinorganica
- 50019 Sesto Fiorentino (Florence), Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex, France
| | - Claudiu T. Supuran
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex, France
| | - Mihail Barboiu
- Adaptative Supramolecular Nanosystems Group
- Institut Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5, France
| |
Collapse
|
27
|
A novel protocol to accelerate dynamic combinatorial chemistry via isolation of ligand–target adducts from dynamic combinatorial libraries: A case study identifying competitive inhibitors of lysozyme. Bioorg Med Chem Lett 2013; 23:5174-7. [DOI: 10.1016/j.bmcl.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 11/21/2022]
|
28
|
Avupati VR, Yejella RP, Parala VR, Killari KN, Papasani VMR, Cheepurupalli P, Gavalapu VR, Boddeda B. Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine-Schiff base conjugates as potential antimycobacterial agents. Bioorg Med Chem Lett 2013; 23:5968-70. [PMID: 24044875 DOI: 10.1016/j.bmcl.2013.08.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/28/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
Abstract
A series of some novel 1,3,5-triazine-Schiff base conjugates (1-32) have been synthesized and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using Alamar Blue assay and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. Compounds 4 (4-Methoxy-6-methyl-N-(3,4,5-trimethoxybenzylidene)-1,3,5-triazin-2-amine), 11 (4-Methoxy-6-methyl-N-(2-hydroxy-3-bromo-5-chloro-benzylidene)-1,3,5-triazin-2-amine) and 24 (4-Methoxy-6-methyl-N-(1-(2,5-dihydroxyphenyl)ethylidene)-1,3,5-triazin-2-amine) exhibited a significant activity at 3.125, 6.25 and 6.25μg/mL, respectively, when compared with the antitubercular drugs such as ethambutol (3.125μg/mL), pyrazinamide (6.25μg/mL) and streptomycin (6.25μg/mL) and it could be a potential starting point to develop new lead compounds in the fight against Mycobacterium tuberculosis H37Rv.
Collapse
Affiliation(s)
- Vasudeva Rao Avupati
- Pharmaceutical Chemistry Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li J, Nowak P, Otto S. Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J Am Chem Soc 2013; 135:9222-39. [DOI: 10.1021/ja402586c] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
30
|
Marin L, Stoica I, Mares M, Dinu V, Simionescu BC, Barboiu M. Antifungal vanillin-imino-chitosan biodynameric films. J Mater Chem B 2013; 1:3353-3358. [PMID: 32260925 DOI: 10.1039/c3tb20558d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanillin-chitosan biodynamers have been prepared and structure-morphology correlations revealed the pathway of progressive incorporation of the aldehyde onto chitosan backbones. Such dynamic biopolymers or biodynamers, generated from reversibly interacting components, offer the possibility to address the dynamic covalent behaviour of the reversible imine-bond formation/hydrolysis equilibria between vanillin and chitosan polymeric backbones. The reaction takes place with very low conversion in acidic aqueous solutions (7-12%), but the imine bond formation is amazingly improved (∼80%) when the reaction takes place while solution-solid state transition and solid state phase-organization events occur. The chitosan-vanillin biopolymeric films described here present interesting Candida albicans antifungal activity compared with other common bacterial strands, which suggests the implementation of these biocompatible materials as thin layer protecting systems for medical devices.
Collapse
Affiliation(s)
- Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania
| | | | | | | | | | | |
Collapse
|
31
|
Wilhelms N, Kulchat S, Lehn JM. Organocatalysis of CN/CN and CC/CN Exchange in Dynamic Covalent Chemistry. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200515] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Romanova NN, Rybalko II, Tallo TG, Zyk NV, Švedas VK. Synthesis of Schiff bases from 3-amino-3-arylpropionic acid esters in aqueous medium. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s107042801206019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
|
34
|
Capela MDF, Mosey NJ, Xing L, Wang R, Petitjean A. Amine Exchange in Formamidines: An Experimental and Theoretical Study. Chemistry 2011; 17:4598-612. [DOI: 10.1002/chem.201002389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 11/05/2022]
Affiliation(s)
- Marinha dF. Capela
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Nicholas J. Mosey
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Liyan Xing
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Ruiyao Wang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Anne Petitjean
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| |
Collapse
|
35
|
Hunt RAR, Otto S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun (Camb) 2011; 47:847-58. [PMID: 21116521 DOI: 10.1039/c0cc03759a] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rosemary A R Hunt
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
36
|
Barboiu M. Multistate and Phase Change Selection in Constitutional Multivalent Systems. CONSTITUTIONAL DYNAMIC CHEMISTRY 2011; 322:33-53. [DOI: 10.1007/128_2011_196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Dolle RE, Bourdonnec BL, Worm K, Morales GA, Thomas CJ, Zhang W. Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2009. JOURNAL OF COMBINATORIAL CHEMISTRY 2010; 12:765-806. [PMID: 20923157 PMCID: PMC4140011 DOI: 10.1021/cc100128w] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Roland E Dolle
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mansfeld FM, Au-Yeung HY, Sanders JKM, Otto S. Dynamic combinatorial chemistry at the phospholipid bilayer interface. ACTA ACUST UNITED AC 2010. [DOI: 10.1186/1759-2208-1-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Background
Molecular recognition at the environment provided by the phospholipid bilayer interface plays an important role in biology and is subject of intense investigation. Dynamic combinatorial chemistry is a powerful approach for exploring molecular recognition, but has thus far not been adapted for use in this special microenvironment.
Results
Thioester exchange was found to be a suitable reversible reaction to achieve rapid equilibration of dynamic combinatorial libraries at the egg phosphatidyl choline bilayer interface. Competing thioester hydrolysis can be minimised by judicial choice of the structure of the thioesters and the experimental conditions. Comparison of the library compositions in bulk solution with those in the presence of egg PC revealed that the latter show a bias towards the formation of library members rich in membrane-bound building blocks. This leads to a shift away from macrocyclic towards linear library members.
Conclusions
The methodology to perform dynamic combinatorial chemistry at the phospholipid bilayer interface has been developed. The spatial confinement of building blocks to the membrane interface can shift the ring-chain equilibrium in favour of chain-like compounds. These results imply that interfaces may be used as a platform to direct systems to the formation of (informational) polymers under conditions where small macrocycles would dominate in the absence of interfacial confinement.
Collapse
|
39
|
Zhou Y, Zhao M, Wu Y, Li C, Wu J, Zheng M, Peng L, Peng S. A class of novel Schiff's bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis. Bioorg Med Chem 2010; 18:2165-2172. [PMID: 20176491 DOI: 10.1016/j.bmc.2010.01.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 11/26/2022]
Abstract
To discover analgesics for treating chronic pain 17 novel Schiff's bases, N,N'-(Z-allylidene-1,3-diyl)bisamino acid methyl esters were prepared from 1,1,3,3,-tetramethoxypropane and amino acid methyl esters. On tail-flick mouse model 20 micromol/kg of these Schiff's bases were orally administered, the analgesic action started 30 min after administration, reached the maximum 120 min after administration, and at 180 min this action was still observed. On a xylene-induced ear edema mouse model 20 micromol/kg of these Schiff's bases exhibited desirable anti-inflammation. Thus the present Schiff's bases are able to treat chronic pain from inflammation. The effect of the side chains of the amino acid residues of these Schiff's bases on the analgesic activity was explained with 3D QSAR.
Collapse
Affiliation(s)
- Yinjian Zhou
- College of Pharmaceutical Sciences, Peking University, Beijing 100083, PR China
| | - Ming Zhao
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yingting Wu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Chunyu Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jianhui Wu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Meiqing Zheng
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Li Peng
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Shiqi Peng
- College of Pharmaceutical Sciences, Peking University, Beijing 100083, PR China; College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
40
|
Au-Yeung HY, Cougnon FBL, Otto S, Pantoş GD, Sanders JKM. Exploiting donor–acceptor interactions in aqueous dynamic combinatorial libraries: exploratory studies of simple systems. Chem Sci 2010. [DOI: 10.1039/c0sc00307g] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|