1
|
Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem 2018; 164:214-240. [PMID: 30594678 DOI: 10.1016/j.ejmech.2018.12.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
Abstract
The histone deacetylases (HDACs) enzymes provided crucial role in transcriptional regulation of cells through deacetylation of nuclear histone proteins. Discoveries related to the HDAC8 enzyme activity signified the importance of HDAC8 isoform in cell proliferation, tumorigenesis, cancer, neuronal disorders, parasitic/viral infections and other epigenetic regulations. The pan-HDAC inhibitors can confront these conditions but have chances to affect epigenetic functions of other HDAC isoforms. Designing of selective HDAC8 inhibitors is a key feature to combat the pathophysiological and diseased conditions involving the HDAC8 activity. This review is concerned about the structural and positional aspects of HDAC8 in the HDAC family. It also covers the contributions of HDAC8 in the pathophysiological conditions, a preliminary discussion about the recent scenario of HDAC8 inhibitors. This review might help to deliver the structural, functional and computational information in order to identify and design potent and selective HDAC8 inhibitors for target specific treatment of diseases involving HDAC8 enzymatic activity.
Collapse
|
2
|
Kim S, Lee Y, Kim S, Lee SJ, Heo PK, Kim S, Kwon YJ, Lee KW. Identification of Novel Human HDAC8 Inhibitors by Pharmacophore-based Virtual Screening and Density Functional Theory Approaches. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seokmin Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Yuno Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Sang Jik Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Phil Kyeong Heo
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Siu Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| | - Yong Jung Kwon
- Department of Chemical Engineering; Kangwon National University; Chunchon 200-701 Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS); Gyeongsang National University (GNU); Jinju 52828 Republic of Korea
| |
Collapse
|
3
|
Structure–activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery. Future Med Chem 2017; 9:2211-2237. [PMID: 29182018 DOI: 10.4155/fmc-2017-0130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure–activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.
Collapse
|
4
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
5
|
Ma N, Wang Y, Zhao BX, Ye WC, Jiang S. The application of click chemistry in the synthesis of agents with anticancer activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1585-99. [PMID: 25792812 PMCID: PMC4362898 DOI: 10.2147/dddt.s56038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents.
Collapse
Affiliation(s)
- Nan Ma
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China ; Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China ; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Bing-Xin Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Wen-Cai Ye
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China ; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Sheng Jiang
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Patil V, Canzoneri JC, Samatov TR, Lührmann R, Oyelere AK. Molecular architecture of zinc chelating small molecules that inhibit spliceosome assembly at an early stage. RNA (NEW YORK, N.Y.) 2012; 18:1605-11. [PMID: 22832025 PMCID: PMC3425776 DOI: 10.1261/rna.034819.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The removal of intervening sequences (introns) from a primary RNA transcript is catalyzed by the spliceosome, a large ribonucleoprotein complex. At the start of each splicing cycle, the spliceosome assembles anew in a sequentially ordered manner on the pre-mRNA intron to be removed. We describe here the identification of a series of naphthalen-2-yl hydroxamate compounds that inhibit pre-mRNA splicing in vitro with mid- to high-micromolar values of IC(50). These hydroxamates stall spliceosome assembly at the A complex stage. A structure-activity analysis of lead compounds revealed three pharmacophores that are essential for splicing inhibition. Specifically, a hydroxamate as a zinc-binding group and a 6-methoxynaphthalene cap group are both critical, and a linker chain comprising eight to nine methylene groups is also important, for the specific binding to the docking site of a target protein molecule and precise positioning of the zinc binding group. As we found no correlation between the inhibition patterns of known histone deacetylases on the one hand and pre-mRNA splicing on the other, we conclude that these compounds may function through the inhibition of the activities of other, at present, unknown spliceosome-associated zinc metalloprotein(s).
Collapse
Affiliation(s)
- Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Josh C. Canzoneri
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Timur R. Samatov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
- Corresponding authorsE-mail E-mail
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
7
|
Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 2012; 4:505-24. [PMID: 22416777 DOI: 10.4155/fmc.12.3] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) have now emerged as a powerful new class of small-molecule therapeutics acting through the regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. Over 490 clinical trials have been initiated in the last 10 years, culminating in the approval of two structurally distinct HDACis - SAHA (vorinostat, Zolinza™) and FK228 (romidepsin, Istodax™). However, the current HDACis have serious limitations, including ineffectively low concentrations in solid tumors and cardiac toxicity, which is hindering their progress in the clinic. Herein, we review the primary paradigms being pursued to overcome these hindrances, including HDAC isoform selectivity, localized administration, and targeting cap groups to achieve selective tissue and cell type distribution.
Collapse
|
8
|
Das S, Addis D, Knöpke LR, Bentrup U, Junge K, Brückner A, Beller M. Selective Catalytic Monoreduction of Phthalimides and Imidazolidine-2,4-diones. Angew Chem Int Ed Engl 2011; 50:9180-4. [DOI: 10.1002/anie.201104226] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Indexed: 11/07/2022]
|
9
|
Das S, Addis D, Knöpke LR, Bentrup U, Junge K, Brückner A, Beller M. Selective Catalytic Monoreduction of Phthalimides and Imidazolidine-2,4-diones. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104226] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2010; 27:1871-907. [DOI: 10.1039/c0np00016g] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|