1
|
Zhao X, Zhong C, Zhu R, Gong R, Liu B, He L, Tian S, Jin J, Jiang T, Chen JL, Wan X, Liu W, Jiang S, Deng P, Cheng Y, Ye N. Structure-Activity Relationship Studies of Substituted 2-Phenyl-1,2,4-triazine-3,5(2 H,4 H)-dione Analogues: Development of Potent eEF2K Degraders against Triple-Negative Breast Cancer. J Med Chem 2024; 67:15837-15861. [PMID: 39208364 DOI: 10.1021/acs.jmedchem.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
eEF2K, an atypical alpha-kinase, is responsible for regulating protein synthesis and energy homeostasis. Aberrant eEF2K function has been linked to various human cancers, including triple-negative breast cancer (TNBC). However, limited cellular activity of current eEF2K modulators impedes their clinical application. Based on the 2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione scaffold of our hits I4 and C1, structure-activity relationship analysis led to the discovery of several more active derivatives (e.g., 19, 34, and 36) in inhibiting the viability of TNBC cell line MDA-MB-231. Moreover, the most potent compound 36 significantly suppresses the viability, proliferation, and migration of both MDA-MB-231 and HCC1806 cell lines. Mechanistically, compound 36 has a high binding affinity for the eEF2K protein and effectively induces its degradation. Additionally, 36 exerts a comparable tumor-suppressive effect to paclitaxel in an MDA-MB-231 cell xenograft mouse model with no obvious toxicity, demonstrating that compound 36 could be developed as a potential novel therapeutic for TNBC treatment.
Collapse
Affiliation(s)
- Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Changxin Zhong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Bingyan Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linhao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Sheng Tian
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Jing Jin
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Jing-Lei Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoya Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Wenjing Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shilong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pan Deng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Tatar G, Taskin Tok T, Ozpolat B, Ay M. Structure prediction of eukaryotic elongation factor-2 kinase and identification of the binding mechanisms of its inhibitors: homology modeling, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:13355-13365. [PMID: 30880628 DOI: 10.1080/07391102.2019.1592024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein kinases emerged as one of the most successful families of drug targets due to their increased activity and involvement in mediating critical signal transduction pathways in cancer cells. Recent evidence suggests that eukaryotic elongation factor 2 kinase (eEF-2K) is a potential therapeutic target for treating some highly aggressive solid cancers, including lung, pancreatic and triple-negative breast cancers. Thus, several compounds have been developed for the inhibition of the enzyme activity, but they are not sufficiently specific and potent. Besides, the crystal structure of this kinase remains unknown. Hence, the functional organization and regulation of eEF-2K remain poorly characterized. For this purpose, we constructed a homology model of eEF-2K and then used docking methodology to better understanding the binding mechanism of eEF-2K with 58 compounds that have been proposed as existing inhibitors. The results of this analysis were compared with the experimental results and the compounds effective against eEF-2K were determined against eEF-2K as a result of both studies. And finally, molecular dynamics (MD) simulations were performed for the stability of eEF-2K with these compounds. According to these study defined that the binding mechanism of eEF-2K with inhibitors at the molecular level and elucidated the residues of eEF-2K that play an important role in enzyme selectivity and ligand affinity. This information may lead to new selective and potential drug molecules to be for inhibition of eEF-2K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gizem Tatar
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.,Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas-Houston MD Anderson Cancer Center, Houston, USA
| | - Mehmet Ay
- Natural Products and Drug Research Laboratory, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University Çanakkale, TURKEY
| |
Collapse
|
3
|
Fu Q, Liu X, Li Y, Wang P, Wu T, Xiao H, Zhao Y, Liao Q, Song Z. Discovery of New Inhibitors of eEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022; 27:molecules27154886. [PMID: 35956836 PMCID: PMC9369671 DOI: 10.3390/molecules27154886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyi Song
- Correspondence: ; Tel.: +86-771-3235635
| |
Collapse
|
4
|
Chacón-Huete F, Messina C, Cigana B, Forgione P. Diverse Applications of Biomass-Derived 5-Hydroxymethylfurfural and Derivatives as Renewable Starting Materials. CHEMSUSCHEM 2022; 15:e202200328. [PMID: 35652539 DOI: 10.1002/cssc.202200328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
This Review summarizes recent efforts to capitalize on 5-hydroxymethylfurfural (HMF) and related furans as emerging building blocks for the synthesis of fine chemicals and materials, with a focus on advanced applications within medicinal and polymer chemistry, as well as nanomaterials. As with all chemical industries, these fields have historically relied heavily on petroleum-derived starting materials, an unsustainable and polluting feedstock. Encouragingly, the emergent chemical versatility of biomass-derived furans has been shown to facilitate derivatization towards valuable targets. Continued work on the synthetic manipulation of HMF, and related derivatives, for access to a wide range of target compounds and materials is crucial for further development. Increasingly, biomass-derived furans are being utilized for a wide range of chemical applications, the continuation of which is paramount to accelerate the paradigm shift towards a sustainable chemical industry.
Collapse
Affiliation(s)
- Franklin Chacón-Huete
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Cynthia Messina
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Brandon Cigana
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
5
|
Akhileshwari P, Sharanya K, Hamid Sallam H, Sridhar M, Lokanath N. Crystal structure elucidation and DFT studies of imidazopyridine-pyrazoline derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Dyachenko IV, Dyachenko VD, Dorovatovskii PV, Khrustalev VN, Nenaidenko VG. Multicomponent Synthesis and Molecular and Crystal Structure of New Derivatives of Partially Hydrogenated Quinolines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ballard DJ, Peng HY, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Ren X, Yang JM, Song J. Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Front Mol Biosci 2021; 8:727863. [PMID: 34532346 PMCID: PMC8438118 DOI: 10.3389/fmolb.2021.727863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Darby J. Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
8
|
Zhu S, Liao M, Tan H, Zhu L, Chen Y, He G, Liu B. Inhibiting Eukaryotic Elongation Factor 2 Kinase: An Update on Pharmacological Small-Molecule Compounds in Cancer. J Med Chem 2021; 64:8870-8883. [PMID: 34162208 DOI: 10.1021/acs.jmedchem.0c02218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), a member of the atypical protein kinase family of alpha-kinases, is well-known as a negative regulator of protein synthesis by phosphorylating eEF2. Notably, eEF2K functions as a key regulator of several cellular processes, leading to tumorigenesis. To date, some small-molecule compounds have been reported as potential eEF2K inhibitors in cancer drug discovery. However, an ideal targeted drug design still faces huge challenges. Alternatively, other design strategies, such as repurposed drugs, dual-target drugs, and drug combination strategies, provide insights into the improvement of cancer treatment. Here, we summarize the crucial eEF2K-modulating pathways in cancer, including AMPK, REDD1, and Src. Moreover, we discuss the inhibition of eEF2K with single-target inhibitors, repurposed drugs, dual-target inhibitors, drug combination strategies, and other emerging technologies for therapeutic purposes. Together, these inspiring findings provide insights into a promising strategy for inhibiting eEF2K with small-molecule compounds to improve potential cancer therapy.
Collapse
Affiliation(s)
- Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huidan Tan
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Marijan S, Mastelić A, Markotić A, Režić-Mužinić N, Vučenović N, Barker D, Pilkington LI, Reynisson J, Čulić VČ. Thieno[2,3- b]Pyridine Derivative Targets Epithelial, Mesenchymal and Hybrid CD15s + Breast Cancer Cells. MEDICINES 2021; 8:medicines8070032. [PMID: 34206154 PMCID: PMC8304450 DOI: 10.3390/medicines8070032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
The adhesion of cancer cells to vascular endothelium is a critical process in hematogenous metastasis and might be similar to the recruitment of leukocytes at the site of inflammation. It is mediated by E-selectin and its ligands, of which the most stereospecific is a glycoconjugate sialyl Lewis x (CD15s), which may be expressed as an oligosaccharide branch of the CD44 glycoprotein, as well as a self-contained glycosphingolipid. It is also known that increased sialylation of glycoconjugates is a feature of malignant cells. The aim of the study was to analyse the effect of a novel thieno[2,3-b]pyridine, compound 1, in MDA-MB-231 triple-negative breast cancer cells (TNBCs) upon CD15s and CD44 expression in different cell subpopulations using flow cytometry. CD15s expression was compared between mesenchymal-like cancer stem cells (CSC, CD44+CD24−), epithelial cells without CD44 (CD44−CD24+ and CD44−CD24−), and CD44+CD24+ cells that exhibit mesenchymal and epithelial features. In addition, expression of CD44 in CD15s+CSC and CD15s−CSC was determined. Compound 1 significantly decreased the percentage of CD15s+CSC, CD15s+CD44+CD24+, and CD15s+CD44− subpopulations, as well as the expression of CD15s in CD44+CD24+ and CD44− cells, and therefore shows potential as a treatment for TNBC.
Collapse
Affiliation(s)
- Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
| | - Nikolina Vučenović
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (D.B.); (L.I.P.)
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (D.B.); (L.I.P.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia; (S.M.); (A.M.); (A.M.); (N.R.-M.); (N.V.)
- Correspondence: ; Tel./Fax: +385-21-557938
| |
Collapse
|
10
|
Discovery of Novel eEF2K Inhibitors Using HTS Fingerprint Generated from Predicted Profiling of Compound-Protein Interactions. MEDICINES 2021; 8:medicines8050023. [PMID: 34065377 PMCID: PMC8161098 DOI: 10.3390/medicines8050023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Background: Eukaryotic elongation factor 2 kinase (eEF2K) regulates the elongation stage of protein synthesis by phosphorylating eEF2, a process related to various diseases including cancer and cardiovascular and neurodegenerative diseases. In this study, we describe the identification of novel eEF2K inhibitors using high-throughput screening fingerprints (HTSFP) generated from predicted profiling of compound-protein interactions (CPIs). Methods: We utilized computationally generated HTSFPs referred to as chemical genomics-based fingerprint (CGBFP). Generally, HTSFPs are generated from multiple biochemical or cell-based assay data. On the other hand, CGBFPs are generated from computational prediction of CPIs using the Chemical Genomics-Based Virtual Screening (CGBVS) method. Therefore, CGBFPs do not have missing information mainly caused by the absence of assay data. Results: Chemogenomics-Based Similarity Profiling (CGBSP) of the screening library (2.6 million compounds) yielded 27 compounds which were evaluated for in vitro eEF2K inhibitory activity. Three compounds with interesting results were identified. Compounds 2 (IC50 = 11.05 μM) and 4 (IC50 = 43.54 μM) are thieno[2,3-b]pyridine derivatives that have the same scaffolds with a known eEF2K inhibitor, while compound 13 (IC50 = 70.13 μM) was a new thiophene-2-amine-type eEF2K inhibitor. Conclusions: CGBSP supplied an efficient strategy in the identification of novel eEF2K inhibitors and provided useful scaffolds for optimization.
Collapse
|
11
|
Mak OW, Sharma N, Reynisson J, Leung IKH. Discovery of novel Hsp90 C-terminal domain inhibitors that disrupt co-chaperone binding. Bioorg Med Chem Lett 2021; 38:127857. [PMID: 33609661 DOI: 10.1016/j.bmcl.2021.127857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
Heat shock protein 90 (Hsp90) is an essential molecular chaperone that performs vital stress-related and housekeeping functions in cells and is a current therapeutic target for diseases such as cancers. Particularly, the development of Hsp90 C-terminal domain (CTD) inhibitors is highly desirable as inhibitors that target the N-terminal nucleotide-binding domain may cause unwanted biological effects. Herein, we report on the discovery of two drug-like novel Hsp90 CTD inhibitors by using virtual screening and intrinsic protein fluorescence quenching binding assays, paving the way for future development of new therapies that employ molecular chaperone inhibitors.
Collapse
Affiliation(s)
- Oi Wei Mak
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom.
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
12
|
Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy. Int J Mol Sci 2021; 22:ijms22052408. [PMID: 33673713 PMCID: PMC7957638 DOI: 10.3390/ijms22052408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure-activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.
Collapse
|
13
|
Recent advances in the chemistry of thieno[2,3-b]pyridines 1. Methods of synthesis of thieno[2,3-b]pyridines. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2969-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Peglow TJ, Bartz RH, Martins CC, Belladona AL, Luchese C, Wilhelm EA, Schumacher RF, Perin G. Synthesis of 2-Organylchalcogenopheno[2,3-b]pyridines from Elemental Chalcogen and NaBH 4 /PEG-400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem 2020; 15:1741-1751. [PMID: 32667720 DOI: 10.1002/cmdc.202000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/29/2022]
Abstract
An alternative method to prepare 2-organylchalcogenopheno[2,3-b]pyridines was developed by the insertion of chalcogen species (selenium, sulfur or tellurium), generated in situ, into 2-chloro-3-(organylethynyl)pyridines by using the NaBH4 /PEG-400 reducing system, followed by an intramolecular cyclization. It was possible to obtain a series of compounds with up to 93 % yield in short reaction times. Among the synthesized products, 2-organyltelluropheno[2,3-b]pyridines have not been described in the literature so far. Moreover, the compounds 2-phenylthieno[2,3-b]pyridine (3 b) and 2-phenyltelluropheno[2,3-b]pyridine (3 c) exhibited significant antioxidant potential in different in vitro assays. Further studies demonstrated that compound 3 b exerted an antinociceptive effect in acute inflammatory and non-inflammatory pain models, thus indicating the involvement of the central and peripheral nervous systems on its pharmacological action. More specifically, our results suggest that the intrinsic antioxidant property of compound 3 b might contribute to attenuating the nociception and inflammatory process on local injury induced by complete Freund's adjuvant (CFA).
Collapse
Affiliation(s)
- Thiago J Peglow
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Andrei L Belladona
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Liu Y, Zhen Y, Wang G, Yang G, Fu L, Liu B, Ouyang L. Designing an eEF2K-Targeting PROTAC small molecule that induces apoptosis in MDA-MB-231 cells. Eur J Med Chem 2020; 204:112505. [PMID: 32717479 DOI: 10.1016/j.ejmech.2020.112505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a key α-kinase that negatively regulates the extension step of protein synthesis, which consumes most of the energy and amino acids required for protein synthesis. Studies have found that eEF2K protein is related to the breast cancer. However, existing inhibitor effect has not achieved the desired effect in cancer therapy. Proteolysis target chimeric (PROTAC) technology is uses proteasome to degrade target protein to achieve the purpose of inhibiting tumour cell growth. Here, we reported that the use of PROTAC strategy in combining with star eEF2K inhibitor A484954 and its potential derivatives. Consequently, candidate compound 11l was found to degrade eEF2K and induce apoptosis in human breast carcinoma MDA-MB-231 cells. Together, these findings demonstrate that our eEF2K-targeting PROTAC small molecule would be a potential new strategy for future breast cancer therapy.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Yongqi Zhen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, PR China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Leilei Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
16
|
Mekky AEM, Sanad SMH, Said AY, Elneairy MAA. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3-b]pyridines as potential pim-1 inhibitors. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1778033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ahmed Y. Said
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
17
|
Sanad SMH, Mekky AEM. Piperazine‐mediated
tandem synthesis of bis(thieno[2,3‐
b
]pyridines): Versatile precursors for related fused [1,2,4]triazolo[4,3‐
a
]pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Karakas D, Ozpolat B. Eukaryotic elongation factor-2 kinase (eEF2K) signaling in tumor and microenvironment as a novel molecular target. J Mol Med (Berl) 2020; 98:775-787. [PMID: 32377852 DOI: 10.1007/s00109-020-01917-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Eukaryotic elongation factor-2 kinase (eEF2K), an atypical member of alpha-kinase family, is highly overexpressed in breast, pancreatic, brain, and lung cancers, and associated with poor survival in patients. eEF2K promotes cell proliferation, survival, and aggressive tumor characteristics, leading to tumor growth and progression. While initial studies indicated that eEF2K acts as a negative regulator of protein synthesis by suppressing peptide elongation phase, later studies demonstrated that it has multiple functions and promotes cell cycle, angiogenesis, migration, and invasion as well as induction of epithelial-mesenchymal transition through induction of integrin β1, SRC/FAK, PI3K/AKT, cyclin D1, VEGF, ZEB1, Snail, and MMP-2. Under stress conditions such as hypoxia and metabolic distress, eEF2K is activated by several signaling pathways and slows down protein synthesis and helping cells to save energy and survive. In vivo therapeutic targeting of eEF2K by genetic methods inhibits tumor growth in various tumor models, validating it as a potential molecular target. Recent studies suggest that eEF2K plays a role in tumor microenvironment cells by monocyte chemoattractant protein-1 (MCP-1) and accumulation of tumor-associated macrophages. Due to its clinical significance and the pivotal role in tumorigenesis and progression, eEF2K is considered as an important therapeutic target in solid tumors. However, currently, there is no specific and potent inhibitor for translation into clinical studies. Here, we aim to systematically review current knowledge regarding eEF2K in tumor biology, microenvironment, and development of eEF2K targeted inhibitors and therapeutics.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Paronikyan EG, Harutyunyan AS, Paronikyan RG. Synthesis of New Thieno[2,3-b]pyridine Derivatives Based on Fused Thiophenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Comert Onder F, Durdagi S, Sahin K, Ozpolat B, Ay M. Design, Synthesis, and Molecular Modeling Studies of Novel Coumarin Carboxamide Derivatives as eEF-2K Inhibitors. J Chem Inf Model 2020; 60:1766-1778. [PMID: 32027127 DOI: 10.1021/acs.jcim.9b01083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic elongation factor-2 kinase (eEF-2K) is an unusual alpha kinase commonly upregulated in various human cancers, including breast, pancreatic, lung, and brain tumors. We have demonstrated that eEF-2K is relevant to poor prognosis and shorter patient survival in breast and lung cancers and validated it as a molecular target using genetic methods in related in vivo tumor models. Although several eEF-2K inhibitors have been published, none of them have shown to be potent and specific enough for translation into clinical trials. Therefore, development of highly effective novel inhibitors targeting eEF-2K is needed for clinical applications. However, currently, the crystal structure of eEF-2K is not known, limiting the efforts for designing novel inhibitor compounds. Therefore, using homology modeling of eEF-2K, we designed and synthesized novel coumarin-3-carboxamides including compounds A1, A2, and B1-B4 and evaluated their activity by performing in silico analysis and in vitro biological assays in breast cancer cells. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) area results showed that A1 and A2 have interaction energies with eEF-2K better than those of B1-B4 compounds. Our in vitro results indicated that compounds A1 and A2 were highly effective in inhibiting eEF-2K at 1.0 and 2.5 μM concentrations compared to compounds B1-B4, supporting the in silico findings. In conclusion, the results of this study suggest that our homology modeling along with in silico analysis may be effectively used to design inhibitors for eEF-2K. Our newly synthesized compounds A1 and A2 may be used as novel eEF-2K inhibitors with potential therapeutic applications.
Collapse
Affiliation(s)
- Ferah Comert Onder
- Department of Chemistry, Faculty of Science and Arts, Natural Products and Drug Research Laboratory, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Computational Biology and Molecular Simulations Laboratory, Bahcesehir University, Kadikoy, 34734 Istanbul, Turkey
| | - Kader Sahin
- Department of Biophysics, School of Medicine, Computational Biology and Molecular Simulations Laboratory, Bahcesehir University, Kadikoy, 34734 Istanbul, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Mehmet Ay
- Department of Chemistry, Faculty of Science and Arts, Natural Products and Drug Research Laboratory, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| |
Collapse
|
21
|
Hassan AY, Sarg MT, El‐Sebaey SA. Synthesis and antitumor evaluation of some new derivatives and fused heterocyclic compounds derived from thieno[2,3‐
b
]pyridine: Part 2. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aisha Y. Hassan
- Department of Chemistry, Faculty of Science (Girls)Al‐Azhar University Nasr City Cairo Egypt
| | - Marwa T. Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls)Al‐Azhar University Nasr City Cairo Egypt
| | - Samiha A. El‐Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls)Al‐Azhar University Nasr City Cairo Egypt
| |
Collapse
|
22
|
Fan W, Verrier C, Queneau Y, Popowycz F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Curr Org Synth 2019; 16:583-614. [DOI: 10.2174/1570179416666190412164738] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Background:
5-Hydroxymethylfurfural (5-HMF) is a biomass-derived
platform chemical, which can be produced from carbohydrates. In the past decades, 5-
HMF has received tremendous attention because of its wide applications in the
production of various value-added chemicals, materials and biofuels. The manufacture
and the catalytic conversion of 5-HMF to simple industrially-important bulk chemicals
have been well reviewed. However, employing 5-HMF as a building block in organic
synthesis has never been summarized exclusively, despite the rapid development in this
area.
Objective:
The aim of this review is to bring a fresh perspective on the use of 5-HMF in
organic synthesis, to the exclusion of already well documented conversion of 5-HMF
towards relatively simple molecules such as 2,5-furandicarboxylic acid, 2,5-dimethylfuran and so on notably
used as monomers or biofuels.
Conclusion:
As it has been shown throughout this review, 5-HMF has been the object of numerous studies on
its use in fine chemical synthesis. Thanks to the presence of different functional groups on this platform
chemical, it proved to be an excellent starting material for the preparation of various fine chemicals. The use of
this C-6 synthon in novel synthetic routes is appealing, as it allows the incorporation of renewable carbonsources
into the final targets.
Collapse
Affiliation(s)
- Weigang Fan
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Charlie Verrier
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Yves Queneau
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Florence Popowycz
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
23
|
Khodair AI, Attia AM, Gendy EA, Elshaier YAMM, El‐Magd MA. Discovery of New
S
‐Glycosides and
N
‐Glycosides of Pyridine‐biphenyl System with Antiviral Activity and Induction of Apoptosis in
MCF
7 Cells. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Adel M. Attia
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Eman A. Gendy
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of PharmacyUniversity of Sadat City Menoufiya 32897 Egypt
| | - Mohammed A. El‐Magd
- Anatomy Department, Faculty of Veterinary MedicineKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| |
Collapse
|
24
|
Sanad SMH, Abdel‐Fattah AM, Attaby FA, Elneairy MAA. Utility of Pyridine‐2(1
H
)‐thiones in the Synthesis of Novel Bis‐Thieno[2,3‐
b
]pyridines and Their Fused Azines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif M. H. Sanad
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | | | - Fawzy A. Attaby
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | | |
Collapse
|
25
|
Sanad SMH, Abdel‐Fattah AM, Attaby FA, Elneairy MAA. Pyridine‐2(1
H
)‐thiones: Versatile Precursors for Novel Pyrazolo[3,4‐
b
]pyridine, Thieno[2,3‐
b
]pyridines, and Their Fused Azines. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sherif M. H. Sanad
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | | | - Fawzy A. Attaby
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | | |
Collapse
|
26
|
Sanad SMH, Hawass MAE, Ahmed AAM, Elneairy MAA. Efficient Synthesis and Characterization of Novel Pyrido[3′,2′:4,5]thieno[3,2‐
d
]pyrimidines and Their Fused [1,2,4]triazole Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Ahmed A. M. Ahmed
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
- Preparatory Year DeanshipJouf University Sakaka Saudi Arabia
| | | |
Collapse
|
27
|
Dyachenko IV, Dyachenko VD, Dorovatovskii PV, Khrustalev VN, Nenajdenko VG. Multicomponent Synthesis of 4-Alkyl(Aryl, Hetaryl)-2-alkoxycarbonyl(aroyl, carbamoyl)- 3,6-diamino-5-cyanothieno[2,3-b]pyridines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Sanad SMH, Hawass MAE, Ahmed AAM, Elneairy MAA. Facile synthesis and characterization of novel pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one and pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine incorporating 1,3-diarylpyrazole moiety. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1468911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Preparatory Year Deanship, Jouf University, Sakaka, KSA
| | | |
Collapse
|
29
|
Salem ME, Darweesh AF, Elwahy AHM. 2-Mercapto-4,6-disubstituted nicotinonitriles: versatile precursors for novel mono- and bis[thienopyridines]. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1471143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mostafa E. Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Dyachenko VD, Dyachenko IV, Nenajdenko VG. Cyanothioacetamide: a polyfunctional reagent with broad synthetic utility. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Eurtivong C, Semenov V, Semenova M, Konyushkin L, Atamanenko O, Reynisson J, Kiselyov A. 3-Amino-thieno[2,3-b]pyridines as microtubule-destabilising agents: Molecular modelling and biological evaluation in the sea urchin embryo and human cancer cells. Bioorg Med Chem 2017; 25:658-664. [DOI: 10.1016/j.bmc.2016.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
|
32
|
Xiao T, Liu R, Proud CG, Wang MW. A high-throughput screening assay for eukaryotic elongation factor 2 kinase inhibitors. Acta Pharm Sin B 2016; 6:557-563. [PMID: 27818922 PMCID: PMC5071636 DOI: 10.1016/j.apsb.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 10/25/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) inhibitors may aid in the development of new therapeutic agents to combat cancer. Purified human eEF2K was obtained from an Escherichia coli expression system and a luminescence-based high-throughput screening (HTS) assay was developed using MH-1 peptide as the substrate. The luminescent readouts correlated with the amount of adenosine triphosphate remaining in the kinase reaction. This method was applied to a large-scale screening campaign against a diverse compound library and subsequent confirmation studies. Nine initial hits showing inhibitory activities on eEF2K were identified from 56,000 synthetic compounds during the HTS campaign, of which, five were chosen to test their effects in cancer cell lines.
Collapse
|
33
|
Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 2016; 37:285-94. [PMID: 26806303 DOI: 10.1038/aps.2015.123] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual protein kinase that regulates the elongation stage of protein synthesis by phosphorylating and inhibiting its only known substrate, eEF2. Elongation is a highly energy-consuming process, and eEF2K activity is tightly regulated by several signaling pathways. Regulating translation elongation can modulate the cellular energy demand and may also control the expression of specific proteins. Growing evidence links eEF2K to a range of human diseases, including cardiovascular conditions (atherosclerosis, via macrophage survival) and pulmonary arterial hypertension, as well as solid tumors, where eEF2K appears to play contrasting roles depending on tumor type and stage. eEF2K is also involved in neurological disorders and may be a valuable target in treating depression and certain neurodegenerative diseases. Because eEF2K is not required for mammalian development or cell viability, inhibiting its function may not elicit serious side effects, while the fact that it is an atypical kinase and quite distinct from the vast majority of other mammalian kinases suggests the possibility to develop it into compounds that inhibit eEF2K without affecting other important protein kinases. Further research is needed to explore these possibilities and there is an urgent need to identify and characterize potent and specific small-molecule inhibitors of eEF2K. In this article we review the recent evidence concerning the role of eEF2K in human diseases as well as the progress in developing small-molecule inhibitors of this enzyme.
Collapse
|
34
|
Dyachenko VD, Nesterov VN, Dyachenko SV, Chernykh AV. Multicomponent synthesis of 2-(alkylsulfanyl)-4-[furan-2-yl-(or thiophen-2-yl)]-5,6,7,8-tetrahydroquinoline-3-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015060081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Wang Q, Edupuganti R, Tavares CDJ, Dalby KN, Ren P. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis. Front Mol Biosci 2015; 2:9. [PMID: 25988177 PMCID: PMC4429643 DOI: 10.3389/fmolb.2015.00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r2 coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r2 of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.
Collapse
Affiliation(s)
- Qiantao Wang
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA ; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin Austin, TX, USA
| | - Ramakrishna Edupuganti
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA
| | - Clint D J Tavares
- Graduate Program in Cell and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA ; Graduate Program in Cell and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
36
|
Synthesis of some new Thieno[2,3-b]pyridines, Pyrimidino[4',5':4,5]thieno[2,3-b]pyridine and Pyridines Incorporating 5-Bromobenzofuran-2-yl Moiety. Molecules 2015; 20:822-38. [PMID: 25574823 PMCID: PMC6272347 DOI: 10.3390/molecules20010822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/29/2014] [Indexed: 02/02/2023] Open
Abstract
2-Sulfanyl-6-(2-thienyl)pyridine-3-carbonitrile, 1-Amino-6-(5-bromo-benzofuran-2-yl)-2-oxo-1,2-dihydro-pyridine-3-carbonitrile, thieno[2,3-b]pyridins, pyrimidino[4',5':4,5]thieno[2,3-b]pyridine, quinazoline and carbamate derivatives were synthesized from sodium 3-(5-bromobenzofuran-2-yl)-3-oxoprop-1-en-1-olate with. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthesis whenever possible and chemical transportation.
Collapse
|
37
|
Synthesis and Characterization of Novel Thieno-Fused Bicyclic Compounds through New Enaminone Containing Thieno[2,3-b]pyridine Scaffold. J CHEM-NY 2015. [DOI: 10.1155/2015/382381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New substituted thieno-fused bicyclic compounds named (1H-pyrazol-3-yl)thieno[2,3-b]pyridin-4(7H)-one derivatives (4a,b), 2-([1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-3-methyl-7-phenylthieno[2,3-b]pyridin-4(7H)-one (5), phenylthieno[2,3-b]pyridin-4(7H)-one derivatives (6a–c,7a–c, and8), and 3-(3-methyl-4-oxo-7-phenyl-4,7-dihydrothieno[2,3-b]pyridin-2-yl)-3-oxopropyl 4-chlorobenzoate (9) were synthesized by reacting the new enaminone (3) with different reagents. The chemical structure of the new molecules was determined by means of different spectroscopic methods such as NMR, IR, MS spectrometry, and by CHN analyses. The molecular structure of the 1,1′-(3-methyl-5-(phenylamino)thiophene-2,4-diyl)diethanone (2) was successfully solved by X-ray single crystal.
Collapse
|
38
|
Edupuganti R, Wang Q, Tavares CDJ, Chitjian CA, Bachman JL, Ren P, Anslyn EV, Dalby KN. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg Med Chem 2014; 22:4910-6. [PMID: 25047940 PMCID: PMC6473179 DOI: 10.1016/j.bmc.2014.06.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022]
Abstract
A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 6-16 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R(1), R(2), and R(3)). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50=420nM) and 9 (IC50=930nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.
Collapse
Affiliation(s)
- Ramakrishna Edupuganti
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, TX 78712, USA; Department of Chemistry, The University of Texas at Austin, TX 78712, USA
| | - Qiantao Wang
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, TX 78712, USA; Department of Biomedical Engineering, Cockrell School of Engineering, College of Engineering, The University of Texas at Austin, TX 78712, USA
| | - Clint D J Tavares
- Graduate Program in Cell and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - Catrina A Chitjian
- Graduate Program in Cell and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - James L Bachman
- Department of Chemistry, The University of Texas at Austin, TX 78712, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, Cockrell School of Engineering, College of Engineering, The University of Texas at Austin, TX 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, TX 78712, USA.
| | - Kevin N Dalby
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, TX 78712, USA; Graduate Program in Cell and Molecular Biology, The University of Texas at Austin, TX 78712, USA.
| |
Collapse
|
39
|
Hait WN, Versele M, Yang JM. Surviving Metabolic Stress: Of Mice (Squirrels) and Men. Cancer Discov 2014; 4:646-9. [DOI: 10.1158/2159-8290.cd-14-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abdel-Fattah AM, Attaby FA. Synthesis, Reactions, and Characterization of 6-Amino-4-(Benzo[b]Thiophen-2-YL)-2-Thioxo-1, 2-Dihydropyridine-3, 5-Dicarbonitrile. PHOSPHORUS SULFUR 2012. [DOI: 10.1080/10426507.2011.590562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Devkota AK, Tavares CDJ, Warthaka M, Abramczyk O, Marshall KD, Kaoud TS, Gorgulu K, Ozpolat B, Dalby KN. Investigating the kinetic mechanism of inhibition of elongation factor 2 kinase by NH125: evidence of a common in vitro artifact. Biochemistry 2012; 51:2100-12. [PMID: 22352903 DOI: 10.1021/bi201787p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence that elongation factor 2 kinase (eEF-2K) has potential as a target for anticancer therapy and possibly for the treatment of depression is emerging. Here the steady-state kinetic mechanism of eEF-2K is presented using a peptide substrate and is shown to conform to an ordered sequential mechanism with ATP binding first. Substrate inhibition by the peptide was observed and revealed to be competitive with ATP, explaining the observed ordered mechanism. Several small molecules are reported to inhibit eEF-2K activity with the most notable being the histidine kinase inhibitor NH125, which has been used in a number of studies to characterize eEF-2K activity in cells. While NH125 was previously reported to inhibit eEF-2K in vitro with an IC(50) of 60 nM, its mechanism of action was not established. Using the same kinetic assay, the ability of an authentic sample of NH125 to inhibit eEF-2K was assessed over a range of substrate and inhibitor concentrations. A typical dose-response curve for the inhibition of eEF-2K by NH125 is best fit to an IC(50) of 18 ± 0.25 μM and a Hill coefficient of 3.7 ± 0.14, suggesting that NH125 is a weak inhibitor of eEF-2K under the experimental conditions of a standard in vitro kinase assay. To test the possibility that NH125 is a potent inhibitor of eEF2 phosphorylation, we assessed its ability to inhibit the phosphorylation of eEF2. Under standard kinase assay conditions, NH125 exhibits a similar weak ability to inhibit the phosphorylation of eEF2 by eEF-2K. Notably, the activity of NH125 is severely abrogated by the addition of 0.1% Triton to the kinase assay through a process that can be reversed upon dilution. These studies suggest that NH125 is a nonspecific colloidal aggregator in vitro, a notion further supported by the observation that NH125 inhibits other protein kinases, such as ERK2 and TRPM7 in a manner similar to that of eEF-2K. As NH125 is reported to inhibit eEF-2K in a cellular environment, its ability to inhibit eEF2 phosphorylation was assessed in MDA-MB-231 breast cancer, A549 lung cancer, and HEK-293T cell lines using a Western blot approach. No sign of a decrease in the level of eEF2 phosphorylation was observed up to 12 h following addition of NH125 to the media. Furthermore, contrary to the previously reported literatures, NH125 induced the phosphorylation of eEF-2.
Collapse
Affiliation(s)
- Ashwini K Devkota
- Graduate Program in Cell and Molecular Biology, The University of Texas, Austin, Texas 78712, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gad-Elkareem MA, Abdel-Fattah AM, Elneairy MA. Pyridine-2(1H)-thione in heterocyclic synthesis: synthesis and antimicrobial activity of some new thio-substituted ethyl nicotinate, thieno[2,3-b]pyridine and pyridothienopyrimidine derivatives. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2011.576345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Azza M. Abdel-Fattah
- b Chemistry Department, Faculty of Science , Cairo University , Giza , 12613 , Egypt
| | - Mohamed A.A. Elneairy
- b Chemistry Department, Faculty of Science , Cairo University , Giza , 12613 , Egypt
| |
Collapse
|