1
|
Gao X, Zhang X, Hu J, Xu X, Zuo Y, Wang Y, Ding J, Xu H, Zhu S. Aconitine induces apoptosis in H9c2 cardiac cells via mitochondria‑mediated pathway. Mol Med Rep 2017; 17:284-292. [PMID: 29115599 PMCID: PMC5780139 DOI: 10.3892/mmr.2017.7894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Aconitine, a diterpenoid alkaloids derived from Aconitum plants, is widely employed to treat various diseases. The aim of the present study was to investigate the apoptotic effect of aconitine in H9c2 cardiac cells. H9c2 cell apoptosis induced by aconitine was detected by a Cell Counting kit-8 assay, DAPI staining, Annexin V-FITC/propidium iodide double staining and western blotting. The effects of aconitine on reactive oxygen species levels and mitochondrial membrane potential were confirmed by fluorescence microscopy and flow cytometry. In addition, ATP contents were determined using a ATP-dependent bioluminescence assay kit. The levels of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) expression and apoptosis-associated proteins including Caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cytochrome c were also assessed. Taken together, the results indicated that aconitine may inhibit cell viability, decrease PGC-1α expression, induce mitochondrial dysfunctions, upregulate Cytochrome c, Bax and Caspase-3, and downregulate Bcl-2, suggesting that aconitine may induce apoptosis through mitochondria-mediated signaling pathways in H9c2 cells.
Collapse
Affiliation(s)
- Xiangting Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xincai Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jun Hu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xuehua Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuanyi Zuo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yun Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jingfeng Ding
- Department of Forensic Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| | - Hongfei Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
2
|
Krieger JP, Ricci G, Lesuisse D, Meyer C, Cossy J. Harnessing C−H Activation of Benzhydroxamates as a Macrocyclization Strategy: Synthesis of Structurally Diverse Macrocyclic Isoquinolones. Chemistry 2016; 22:13469-73. [DOI: 10.1002/chem.201602332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-Philippe Krieger
- Laboratory of Organic Chemistry; Institute of Chemistry, Biology and Innovation (CBI); ESPCI Paris, CNRS (UMR8231), PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Gino Ricci
- Sanofi Process Development; 45 chemin de Mételine BP15 04210 Sisteron Cedex France
| | - Dominique Lesuisse
- R&D Sanofi; 1 avenue Pierre Brossolette 91385 Chilly-Mazarin Cedex France
| | - Christophe Meyer
- Laboratory of Organic Chemistry; Institute of Chemistry, Biology and Innovation (CBI); ESPCI Paris, CNRS (UMR8231), PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Janine Cossy
- Laboratory of Organic Chemistry; Institute of Chemistry, Biology and Innovation (CBI); ESPCI Paris, CNRS (UMR8231), PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| |
Collapse
|
3
|
Deng C, Ji C, Qin W, Cao X, Zhong J, Li Y, Srinivas S, Feng Y, Deng X. Deoxynivalenol inhibits proliferation and induces apoptosis in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:232-241. [PMID: 27037652 DOI: 10.1016/j.etap.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
Deoxynivalenol (DON) is a stable mycotoxins found in cereals infected by certain fungal species and causes adverse health effects in animals and human such as vomiting, diarrhea and reproductive toxicity. In this study, we investigated the toxic and apoptotic effects of DON in human umbilical vein endothelial cells (HUVECs), a good model for studying inflammation. The results show that DON significantly inhibited the viability of HUVECs. DON could also inhibit the proliferation of HUVECs through G2/M phase arrest in cell cycle progression. Moreover, oxidative stress induced by DON was indicated by observations of increased levels of reactive oxygen species (ROS). In addition, DON also causes mitochondrial damage by decreasing the mitochondrial membrane potential and inducing apoptosis by up-regulation of apoptosis-related genes like caspase-3, caspase-9, and Bax genes, and down-regulation of Bcl-2 gene. These results together suggest that DON could induce cell cycle arrest, oxidative stress, and apoptosis in HUVECs.
Collapse
Affiliation(s)
- Chao Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changyun Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weisen Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xifeng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jialian Zhong
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yugu Li
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Youjun Feng
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xianbo Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217670. [PMID: 26294939 PMCID: PMC4532905 DOI: 10.1155/2015/217670] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022]
Abstract
A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells.
Collapse
|
5
|
Ren J, Yang J, Xu Y, Huang Q, Yang M, Hu K. Lupiwighteone induces cell cycle arrest and apoptosis and activates the Nrf2/ARE pathway in human neuroblastoma cells. Biomed Pharmacother 2014; 69:153-61. [PMID: 25661352 DOI: 10.1016/j.biopha.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/09/2014] [Indexed: 12/22/2022] Open
Abstract
Lupiwighteone (Lup) is a kind of natural isoflavone, but its pharmacological effect and active mechanism are rarely reported. This study aimed to investigate the anticancer and cancer preventive effects of Lup on human neuroblastoma (SH-SY5Y) cells. We found that Lup could inhibit SH-SY5Y cells growth in a concentration- and time-dependent manner. Further studies suggested that Lup could induce G2/M phase arrest associated with an evident decrease in cyclin B1/D1 and cyclin dependent kinase (CDK) 1/2/4/6 protein expressions. Moreover, Lup could regulate the changes of mitochondrial membrane potential and increase intracellular reactive oxygen species (ROS) production. After the cells were treated with Lup, topical morphological characteristics were observed; apoptosis-related protein expressions, such as Bax, cytochrome c, cleaved caspase-9, cleaved caspase-3 and cleaved PARP-1 were increased; and protein expressions, such as Bcl-2, procaspase-9, PARP-1 and P-Akt were decreased. These changes were observed simultaneously. In addition, Nrf2 transcription factor activation was detected by an ARE-GFP reporter assay. Nrf2 nuclear localization was then investigated using a fluorescence microscope. Furthermore, Nrf2 and Keap1 protein levels were determined by western blot. Our results may provide a scientific basis for the application of the anticancer and cancer preventive effects of Lup on SH-SY5Y cells.
Collapse
Affiliation(s)
- Jie Ren
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China.
| | - Jie Yang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Yuanyuan Xu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Qianhui Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Meng Yang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China.
| |
Collapse
|
6
|
T-type Ca2+ channel blocker, KYS05090 induces autophagy and apoptosis in A549 cells through inhibiting glucose uptake. Molecules 2014; 19:9864-75. [PMID: 25006791 PMCID: PMC6270691 DOI: 10.3390/molecules19079864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
It has been reported that [3-(1,1'-biphenyl-4-yl)-2-(1-methyl-5-dimethylamino-pentylamino)-3,4-dihydroquinazolin-4-yl]-N-benzylacetamide 2hydrochloride (KYS05090), a selective T-type Ca2+ channel blocker, reduces tumor volume and weight in the A549 xenograft model, but the molecular mechanism of cell death has not yet been elucidated. In this study, KYS05090 induced autophagy- and apoptosis-mediated cell death in human lung adenocarcinoma A549 cells. Although KYS05090 decreased intracellular Ca2+ levels, it was not directly related with KYS05090-induced cell death. In addition, KYS05090 generated intracellular reactive oxygen species (ROS) and reduced glucose uptake, and catalase and methyl pyruvate prevented KYS05090-induced cell death. These results indicate that KYS05090 can lead to autophagy and apoptosis in A549 cells through ROS generation by inhibiting glucose uptake. Our findings suggest that KYS05090 has potential chemotherapeutic value for the treatment of lung cancer.
Collapse
|
7
|
Li D, Ma H, Ye Y, Ji C, Tang X, Ouyang D, Chen J, Li Y, Ma Y. Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:163-171. [PMID: 24952344 DOI: 10.1016/j.etap.2014.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced as a secondary metabolite by fungal species. In this report, we investigated the apoptotic effect of DON in mouse thymic epithelial cell line 1 (MTEC1). MTEC1 cell apoptosis induced by DON was confirmed by nuclei morphology change, TUNEL positive staining, annexin V/propidium iodide positive staining and increased protein levels of caspase-3, caspase-8, caspase-9 and poly(ADP-ribose) polymerase (PARP). The effects of DON on reactive oxygen species (ROS) levels and mitochondrial membrane potential were investigated via fluorescence microscope and flow cytometry, respectively. In addition, DON could significantly increase the protein levels of p53 and Bax/Bcl-2 ratio in MTEC1 cells. Taken together, our results suggest that DON causes the activation of p53, increased levels of ROS and the induction of mitochondrial dysfunction, which may contribute to DON-induced apoptosis in MTEC1 cells.
Collapse
Affiliation(s)
- Daotong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changyun Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dan Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Apoptosis Induction by the Total Flavonoids from Arachniodes exilis in HepG2 Cells through Reactive Oxygen Species-Mediated Mitochondrial Dysfunction Involving MAPK Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:906941. [PMID: 24976852 PMCID: PMC4058121 DOI: 10.1155/2014/906941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
Arachniodes exilis is used as a folk medicine in China and proved to have antibacterial, anti-inflammatory, and sedative activities. In the present study, the antitumor effect of the total flavonoids of A. exilis (TFAE) against HepG2 cells was evaluated. The results showed that TFAE inhibited the growth of HepG2 cells in a dosage- and time-dependent manner. Flow cytometry and Hoechst 33342 fluorescence staining results showed that TFAE could significantly increase the apoptosis ratio of HepG2 cells, which is accompanied with increased intracellular reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (ΔΨm). Western blotting indicated that TFAE downregulated the ratio of Bcl-2/Bax, increased cytochrome c release, and activated the caspases-3 and -9. Further analysis showed that TFAE stimulated the mitogen-activated protein kinase (MAPK). However, treatment with NAC (reactive oxygen species scavenger) and MAPK-specific inhibitors (SP600125 and SB203580) could reverse the changes of these apoptotic-related proteins. These results suggested that TFAE possessed potential anticancer activity in HepG2 cells through ROS-mediated mitochondrial dysfunction involving MAPK pathway.
Collapse
|
9
|
Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Carcinogenesis 2013; 34:1852-60. [DOI: 10.1093/carcin/bgt133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
The synthetic flavonoid WYC02-9 inhibits colorectal cancer cell growth through ROS-mediated activation of MAPK14 pathway. Life Sci 2013; 92:1081-92. [PMID: 23624232 DOI: 10.1016/j.lfs.2013.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/11/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
AIM Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. In this study, we explored the anti-cancer activity of WYC02-9, a synthetic protoapigenone, on human HCT116 CRC cells. MAIN METHODS The anti-cancer activity of WYC02-9 and its underlying mechanisms were analyzed using XTT cell proliferation assays, colony formation assays, FACS analysis, annexin V staining, immunoblotting analysis, reactive oxygen species (ROS) generation assays, soft agar assays, a nude mice xenograft study and immunohistochemistry assays. KEY FINDINGS Data showed that WYC02-9 suppressed CRC cell growth by arresting cells at G2/M and inducing cell death via apoptotic pathways. Further analysis demonstrated that WYC02-9-induced apoptosis was mediated by the activation of a ROS-mediated MAPK14 pathway. An in vivo xenograft study revealed that WYC02-9 enhanced MAP2K3/6 and MAPK14 phosphorylation, induced apoptosis, and suppressed CRC tumor growth. SIGNIFICANCE WYC02-9 exerts its anti-tumor effect via ROS/MAPK14-induced apoptosis and has the potential to be developed as a chemotherapeutic agent for CRC.
Collapse
|
11
|
Zhou D, Wei A, Cao C, Ruan J. DICO, a novel nonaromatic B-ring flavonoid, induces G2/M cell cycle arrest and apoptosis in human hepatoma cells. Food Chem Toxicol 2013; 57:322-9. [PMID: 23567243 DOI: 10.1016/j.fct.2013.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
Abstract
DICO was a novel nonaromatic B-ring flavonoid obtained from Macrothelypteris torresiana. In the present work, we investigated the antitumor activity and the antineoplastic mechanism of DICO. Our study showed that DICO inhibited the growth of HepG2 cells in dose and time-dependent manners. As well as DICO induced G2/M cell cycle arrest and apoptosis via a ROS-mediated mitochondrial pathway. Western blot assay demonstrated that DICO decreased Bcl-2 level and induced Bax translocation to cause cytochrome c release. Subsequently, caspase-9 and caspase-3 were activated. Meanwhile, the alterations of cyclin A and B1, p-CDK1 and p-cdc25c levels were also observed in response to DICO treatment. Taken together, DICO displayed a significant antitumor effect through G2/M cell cycle arrest and apoptosis induction, which suggested DICO might have therapeutic potential against tumors.
Collapse
Affiliation(s)
- Daonian Zhou
- Beijing Institute of Biotechnology, Beijing 100000, China
| | | | | | | |
Collapse
|
12
|
Zhang S, He Y, Tong Q, Chen Q, Wu X, Huang W. Deltonin induces apoptosis in MDA‑MB‑231 human breast cancer cells via reactive oxygen species‑mediated mitochondrial dysfunction and ERK/AKT signaling pathways. Mol Med Rep 2013; 7:1038-44. [PMID: 23314115 DOI: 10.3892/mmr.2013.1273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/28/2012] [Indexed: 02/05/2023] Open
Abstract
Deltonin, a steroidal saponin isolated from Dioscorea zingiberensis Wright, exhibits high cytotoxic activity in cancer cells. In the present study, the effects of deltonin on cell proliferation and apoptosis were evaluated in the MDA‑MB‑231 human breast carcinoma cell line. Following treatment with deltonin, the viability of MDA‑MB‑231 cells was analyzed using MTT assay and apoptosis, mitochondrial membrane potential (∆Ψm) alternation and intracellular reactive oxygen species (ROS) generation was determined by flow cytometry. In addition, western blot analysis was performed to examine the expression of apoptosis‑associated proteins. The results demonstrated that deltonin induced apoptosis in MDA‑MB‑231 cells in a time‑ and concentration‑dependent manner. Apoptosis was associated with depolarization of ∆Ψm and time‑dependent ROS generation. Deltonin treatment also resulted in Bax upregulation, Bcl-2 downregulation, activation of caspase‑3 and ‑8 and poly (ADP ribose) polymerase cleavage. Decreased levels of phosphorylated extracellular signal‑regulated kinase (ERK) and phosphorylated AKT were also observed. Results indicate that the proliferation inhibitory effect of deltonin is associated with its apoptosis‑inducing effect, which may correlate with ROS‑mediated mitochondrial dysfunction as well as activation of the ERK/AKT signaling pathways. Therefore, deltonin may be a potential chemotherapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiyuan Zhang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital/Medical School, Sichuan University, Sichuan 610041, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Park EJ, Kiselev E, Conda-Sheridan M, Cushman M, Pezzuto JM. Induction of apoptosis by 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via modulation of MAPKs (p38 and c-Jun N-terminal kinase) and c-Myc in HL-60 human leukemia cells. JOURNAL OF NATURAL PRODUCTS 2012; 75:378-384. [PMID: 22148260 PMCID: PMC3311722 DOI: 10.1021/np200791j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently, we reported that 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (AM6-36), sharing structural similarity with naturally occurring isoquinolines, induced activities mediated by retinoid X receptor (RXR) response element accompanied by antiproliferative effects on breast cancer cells. To further characterize the biologic potential of AM6-36, we currently report studies conducted with HL-60 human leukemia cells. AM6-36 significantly inhibited cellular proliferation in a dose- and time-dependent manner with an IC(50) value of 86 nM. When evaluated at low test concentrations (≤0.25 μM), AM6-36 induced arrest in the G2/M phase of the cell cycle. At higher concentrations (1 and 2 μM), the response shifted to apoptosis, which was consistent with the effect of AM6-36 on other apoptotic signatures including an increase of apoptotic annexin V(+) 7-AAD(-) cells, loss of mitochondrial membrane potential, induction of poly(ADP-ribose) polymerase cleavage, and activation of several caspases. These apoptotic effects are potentially due to up-regulation of p38 MAPK and JNK phosphorylation and down-regulation of c-Myc oncogene expression. Taken together, AM6-36 might serve as an effective anticancer agent by inducing G2/M cell cycle arrest and apoptosis through the activation of MAPKs and inhibition of c-Myc.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720
| | - Evgeny Kiselev
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907
| | - Martin Conda-Sheridan
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720
| |
Collapse
|
14
|
Wei A, Zhou D, Xiong C, Cai Y, Ruan J. A novel non-aromatic B-ring flavonoid: isolation, structure elucidation and its induction of apoptosis in human colon HT-29 tumor cell via the reactive oxygen species-mitochondrial dysfunction and MAPK activation. Food Chem Toxicol 2011; 49:2445-52. [PMID: 21741427 DOI: 10.1016/j.fct.2011.06.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to elucidate the chemical structure of a novel non-aromatic B-ring flavonoid (DHEC) isolated from Macrothelypteris viridifrons and to evaluate its putative molecular mechanism of action on induction of apoptosis in human colon HT-29 cancer cell. On the basis of MS, UV, IR, 1D and 2D NMR data, DHEC was identified as 2-(cis-1, 2-dihydroxy-4-oxo-cyclohex-5-enyl)-5-hydroxy-7-ethoxy-chromone. In addition, the cytotoxicity of DHEC and its effect on induction of apoptosis were confirmed by several assays. After treatment of HT-29 cell with DHEC, we observed the accumulation of intracellular reactive oxygen species, the loss of mitochondrial membrane potential, the alteration of expression of the Bcl-2 family members, the releasing of cytochrome c, the cleavage of poly (ADP-ribose) polymerase (PARP), and the activation of caspase-3, -8, and -9. Further analysis showed that the mitogen-activated protein kinase (MAPK) related proteins were stimulated by treatment with DHEC. These results suggest that DHEC exhibits potential anti-cancer activity in HT-29 cell through induction of apoptosis, which may highly be associated with reactive oxygen species-mitochondrial dysfunction as well as activation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Anhua Wei
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|