1
|
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024; 37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Yin XD, Sun Y, Lawoe RK, Yang GZ, Liu YQ, Shang XF, Liu H, Yang YD, Zhu JK, Huang XL. Synthesis and anti-phytopathogenic activity of 8-hydroxyquinoline derivatives. RSC Adv 2019; 9:30087-30099. [PMID: 35530209 PMCID: PMC9072087 DOI: 10.1039/c9ra05712a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 12/04/2022] Open
Abstract
Phytopathogenic fungi have become a serious threat to the quality of agricultural products, food security and human health globally, necessitating the need to discover new antifungal agents with de novo chemical scaffolds and high efficiency. A series of 8-hydroxyquinoline derivatives were designed and synthesized, and their antifungal activity was evaluated against five phytopathogenic fungi. In vitro assays revealed that most of the tested compounds remarkably impacted the five target fungi and their inhibitory activities were better than that of the positive control azoxystrobin. Compound 2, in particular, exhibited the highest potency among all the tested compounds, with an EC50 of 0.0021, 0.0016, 0.0124, 0.0059 and 0.0120 mM respectively against B. cinerea, S. sclerotiorum, F. graminearum, F. oxysporum and M. oryzae, followed by compound 5c. The morphological observations of optical microscopy and scanning electron microscopy revealed that compounds 2 and 5c caused mycelial abnormalities of S. sclerotiorum. Futhermore, the results of in vivo antifungal activity of compounds 2 and 5c against S. sclerotiorum showed that 5c possessed stronger protective and curative activity than that of 2, and the curative effects of 5c at 40 and 80 μg mL−1 (84.18% and 95.44%) were better than those of azoxystrobin (77.32% and 83.59%). Therefore, compounds 2 and 5c are expected to be novel lead structures for the development of new fungicides. Phytopathogenic fungi have become a serious threat to the quality of agricultural products, food security and human health globally, necessitating the need to discover new antifungal agents with de novo chemical scaffolds and high efficiency.![]()
Collapse
Affiliation(s)
- Xiao-Dan Yin
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Yu Sun
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Raymond Kobla Lawoe
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Guan-Zhou Yang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xiao-Fei Shang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences
| | - Hua Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Yu-Dong Yang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Jia-Kai Zhu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xiao-Ling Huang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
3
|
Monacelli F, Cea M, Borghi R, Odetti P, Nencioni A. Do Cancer Drugs Counteract Neurodegeneration? Repurposing for Alzheimer's Disease. J Alzheimers Dis 2018; 55:1295-1306. [PMID: 27834781 DOI: 10.3233/jad-160840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In spite of in depth investigations in the field of the amyloid cascade hypothesis, so far, no disease modifying therapy has been developed for Alzheimer's disease (AD). The pathophysiology provides some evidence of the inverse correlation between cancer and AD. Both AD and cancer are characterized by abnormal cellular behaviors; trigger factors along with a meta synchronously action is expected to drive cancer or neurodegeneration, supporting, respectively, progressive neuronal loss or uncontrolled cell proliferation in cancer cells. So far, cancer and AD are seemingly two opposite ends of the same biological spectrum. Basic science increasingly indicates shared molecular mechanisms between cancer and AD and gives weight to key relevant biological theories; according to them, the inverse tuning of clustered gene expression, the sharing of mutual independent pathway or the deregulated unfolded proteins system (UPR) may count for this inverse association. Additionally, the common biological background gave credibility to the recent discovery of a repurposing role for cancer drugs in AD. It refers to the development of new uses for existing pharmaceuticals having the same role as the original mechanism or to the discovery of a new drug action with disease modifying effects. The present review summarizes the most important biological theories that link neurodegeneration and cancer and provides an up-to-date revision of the repurposing cancer agents for AD. The review also addresses the gap of knowledge, since drug cancer repositioning holds an important promise but further investigations are warranted to ascertain the clinical relevance of such attractive clinical candidate compounds for AD.
Collapse
Affiliation(s)
- Fiammetta Monacelli
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Michele Cea
- Section of Haematology, Department of Internal Medicine and Medical Specialties, (DIMI), University of Genoa, Genoa, Italy
| | - Roberta Borghi
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Patrizio Odetti
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| |
Collapse
|
4
|
Weatherbee JL, Kraus JL, Ross AH. ER stress in temozolomide-treated glioblastomas interferes with DNA repair and induces apoptosis. Oncotarget 2018; 7:43820-43834. [PMID: 27286262 PMCID: PMC5190062 DOI: 10.18632/oncotarget.9907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor. Radiation in combination with temozolomide (TMZ), the current chemotherapeutic for GBMs, only provides 12–14 months survival post diagnosis. Because GBMs are dependent on both activation of the DNA damage pathway and the endoplasmic reticulum (ER) stress response, we asked if a novel ER stress inducing agent, JLK1486, increases the efficacy of TMZ. We found that the combination of TMZ+JLK1486 resulted in decreased proliferation in a panel of adherent GBM cells lines and reduced secondary sphere formation in non-adherent and primary lines. Decreased proliferation correlated with increased cell death due to apoptosis. We found prolonged ER stress in TMZ+JLK1486 treated cells that resulted in sustained activation of the unfolded protein response (UPR) through increased levels of BiP, ATF4, and CHOP. In addition, TMZ+JLK1486 treatment caused decreased RAD51 levels, impairing DNA damage repair. Furthermore, we found delayed time to tumor doubling in TMZ+JLK1486 treated mice. Our data shows that the addition of JLK1486 to TMZ increases the efficaciousness of the treatment by decreasing proliferation and inducing cell death. We propose increased cell death is due to two factors. One, prolonged ER stress driving the expression of the pro-apoptotic transcription factor CHOP, and, second, unresolved DNA double strand breaks, due to decreased RAD51 levels. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between unresolved ER stress and the DNA damage response pathway.
Collapse
Affiliation(s)
- Jessica L Weatherbee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean-Louis Kraus
- Developmental Biology Institute of Marseille-Luminy (IBDML), Aix-Marseille University (AMU) and CNRS, UMR 7288, IBDML, Case 907, Marseille, France
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Koekemoer TC, van de Venter M, Kraus JL. JLK1486, a N,N-[(8-hydroxyquinoline)methyl]-substituted benzylamine analogue, inhibits melanoma proliferation and induces autophagy. Cell Prolif 2014; 47:416-26. [PMID: 25139616 DOI: 10.1111/cpr.12127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/20/2014] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To investigate anti-proliferatory activity of a selected N,N-[(8-hydroxyquinoline)methyl]-substituted benzylamine (JLK1486) on melanoma cells and to characterize its mechanism of cell population growth inhibition. MATERIALS AND METHODS In vitro cultures of B16F10 (mouse melanoma) cells were used as a model to characterize anti-proliferatory activity of JLK1486 using MTT growth assay, trypan blue viability assessment, cell cycle analysis, melanin production, β-galactosidase and acridine orange staining. RESULTS Proliferating B16F10 and also MeWo (human melanoma) cells were strongly growth inhibited by JLK1486, displaying IC50 values of 196 nm and 110 nm respectively. Anti-proliferatory effects were independent of cell death and were characterized by a distinct accumulation of cells in G0 /G1 phase. Tyrosinase activity and relative melanin content remained unchanged indicating that the anti-proliferatory activity was not due to phenotype differentiation. Although treated B16F10 cells stained strongly positive for senescence marker β-galactosidase, cells regained near normal proliferatory activity after removal of JLK1486. Increased acridine orange staining and presence of perinuclear vacuoles suggested induction of autophagy in B16F10 cells. Furthermore, JLK1486 pre-treatment completely abolished melphalan and antimycin A-induced apoptosis. CONCLUSION JLK1486 provides a promising chemical scaffold to develop new anti-melanoma drugs or combination therapies, due to its potent inhibition of cell proliferation and induction of autophagy, at pharmacologically relevant concentrations.
Collapse
Affiliation(s)
- T C Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | | | | |
Collapse
|
6
|
Kraus JL. Therapeutic Links between Alzheimer’s Disease and Brain Cancer: Drug Discovery Consequences. ChemMedChem 2013; 8:689-92. [DOI: 10.1002/cmdc.201300006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 01/01/2023]
|
7
|
Antiproliferative and iron chelating efficiency of the new bis-8-hydroxyquinoline benzylamine chelator S1 in hepatocyte cultures. Chem Biol Interact 2012; 195:165-72. [DOI: 10.1016/j.cbi.2011.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/23/2022]
|