1
|
Davey PRWJ, Forsyth CM, Paterson BM. Crystallographic and Computational Characterisation of the Potential PET Tracer 1,4,7‐Triazacyclononane‐1,4,7‐tri(methylenephosphonato)gallium(III). ChemistrySelect 2022. [DOI: 10.1002/slct.202103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Craig M. Forsyth
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Brett M. Paterson
- School of Chemistry Monash University Clayton Victoria 3800 Australia
- Monash Biomedical Imaging Monash University Clayton Victoria 3800 Australia
- Current address: Centre for Advanced Imaging University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
2
|
Radiosynthesis and preclinical evaluation of [ 68Ga]Ga-NOTA-folate for PET imaging of folate receptor β-positive macrophages. Sci Rep 2020; 10:13593. [PMID: 32788595 PMCID: PMC7423886 DOI: 10.1038/s41598-020-70394-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
Folate receptor β (FR-β), a marker expressed on macrophages, is a promising target for imaging of inflammation. Here, we report the radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate (68Ga-FOL). After determining the affinity of 68Ga-FOL using cells expressing FR-β, we studied atherosclerotic mice with 68Ga-FOL and 18F-FDG PET/CT. In addition, we studied tracer distribution and co-localization with macrophages in aorta cryosections using autoradiography, histology, and immunostaining. The specificity of 68Ga-FOL was assessed in a blocking study with folate glucosamine. As a final step, human radiation doses were extrapolated from rat PET data. We were able to produce 68Ga-FOL with high radiochemical purity and moderate molar activity. Cell binding studies revealed that 68Ga-FOL had 5.1 nM affinity for FR-β. Myocardial uptake of 68Ga-FOL was 20-fold lower than that of 18F-FDG. Autoradiography and immunohistochemistry of the aorta revealed that 68Ga-FOL radioactivity co-localized with Mac-3–positive macrophage-rich atherosclerotic plaques. The plaque-to-healthy vessel wall ratio of 68Ga-FOL was significantly higher than that of 18F-FDG. Blocking studies verified that 68Ga-FOL was specific for FR. Based on estimations from rat data, the human effective dose was 0.0105 mSv/MBq. Together, these findings show that 68Ga-FOL represents a promising new FR-β–targeted tracer for imaging macrophage-associated inflammation.
Collapse
|
3
|
Wang X, Jaraquemada-Peláez MDG, Cao Y, Ingham A, Rodríguez-Rodríguez C, Pan J, Wang Y, Saatchi K, Häfeli UO, Lin KS, Orvig C. H2CHXhox: Rigid Cyclohexane-Reinforced Nonmacrocyclic Chelating Ligand for [nat/67/68Ga]Ga3+. Inorg Chem 2020; 59:4895-4908. [DOI: 10.1021/acs.inorgchem.0c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | | | - Yang Cao
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Aidan Ingham
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3,Canada
| | - Cristina Rodríguez-Rodríguez
- Center for Comparative Medicine, 4145 Wesbrook Mall, Vancouver, British Columbia V6T 1W5, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jinhe Pan
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Yongliang Wang
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
4
|
Comparison of DOTA and NODAGA as chelates for 68Ga-labelled CDP1 as novel infection PET imaging agents. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Shi S, Yao L, Li L, Wu Z, Zha Z, Kung HF, Zhu L, Fang DC. Synthesis of novel technetium-99m tricarbonyl-HBED-CC complexes and structural prediction in solution by density functional theory calculation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191247. [PMID: 31827858 PMCID: PMC6894603 DOI: 10.1098/rsos.191247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
HBED-CC (N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylene diamine-N,N'-diacetic acid, L1 ) is a common bifunctional chelating agent in preparation of 68Ga-radiopharmaceuticals. Due to its high stability constant for the Ga3+ complex (logKGaL = 38.5) and its acyclic structure, it is well known for a rapid and efficient radiolabelling at ambient temperature with Gallium-68 and its high in vivo stability. [99mTc][Tc(CO)3(H2O)3]+ is an excellent precursor for radiolabelling of biomolecules. The aim of this study was to develop a novel preparation method of 99mTc-HBED-CC complexes. In this study, HBED-CC-NI (2,2'-(ethane-1,2-diylbis((2-hydroxy-5-(3-((2-(2-nitro-1H-imidazol-1-yl)ethyl)amino)-3-oxopropyl)benzyl)-azanediyl))-diacetic acid, L2 ), a derivative of HBED-CC, was designed and synthesized. Both L1 and L2 were radiolabelled by [99mTc][Tc(CO)3(H2O)3]+ successfully for the first time. In order to explore the coordination mode of metal and chelates, non-radioactive Re(CO)3 L1 and Re(CO)3 L2 were synthesized and characterized spectroscopically. Tc(CO)3 L1 and Tc(CO)3 L2 in solution were calculated by density functional theory and were analysed with radio-HPLC chromatograms. It showed that [99mTc]Tc(CO)3 L2 forms two stable diastereomers in solution, which is similar to those of [68Ga]Ga-HBED-CC complexes. Natural bond orbital analysis through the natural population charges revealed a charge transfer between [99mTc][Tc(CO)3]+ and L1 or L2 . The experimental results showed that tricarbonyl technetium might form stable complex with HBED-CC derivatives, which is useful for the future application of using HBED-CC as a bifunctional chelating agent in developing new 99mTc-radiopharmaceuticals as diagnostic imaging agents.
Collapse
Affiliation(s)
- Shengyu Shi
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lifeng Yao
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, People's Republic of China
| | - Linlin Li
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hank F. Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, People's Republic of China
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Wang X, Jaraquemada-Peláez MDG, Cao Y, Pan J, Lin KS, Patrick BO, Orvig C. H2hox: Dual-Channel Oxine-Derived Acyclic Chelating Ligand for 68Ga Radiopharmaceuticals. Inorg Chem 2018; 58:2275-2285. [DOI: 10.1021/acs.inorgchem.8b01208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yang Cao
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jinhe Pan
- BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Prata MIM, André JP, Kovács Z, Takács AI, Tircsó G, Tóth I, Geraldes CFGC. Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. J Inorg Biochem 2017; 177:8-16. [PMID: 28918355 DOI: 10.1016/j.jinorgbio.2017.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Three triaza macrocyclic ligands, H6NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H4NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H5NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1H, 31P and 71Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71Ga NMR spectra gave information on the symmetry of the Ga3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1H NMR spectra allowed the analysis of the structure and the number of species in solution. 31P and 1H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log KHi) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log KGaL=34.44 (0.04) and stepwise protonation constants of Ga(NOA2P)2- were determined by potentiometry and 69Ga and 31P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67Ga(NO2AP)- and 67Ga(NOA2P)2-chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed.
Collapse
Affiliation(s)
- Maria I M Prata
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - João P André
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Zoltán Kovács
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anett I Takács
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Carlos F G C Geraldes
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ma MT, Cullinane C, Imberti C, Baguña
Torres J, Terry SYA, Roselt P, Hicks R, Blower PJ. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with (68)Ga(3.). Bioconjug Chem 2016; 27:309-18. [PMID: 26286399 PMCID: PMC4759618 DOI: 10.1021/acs.bioconjchem.5b00335] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/13/2015] [Indexed: 01/13/2023]
Abstract
Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with (68)Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced (68)Ga(3+) in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60-80 MBq nmol(-1). Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new (68)Ga(3+)-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1-2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of (68)Ga biomolecules under mild conditions suitable for peptides and proteins.
Collapse
Affiliation(s)
- Michelle T. Ma
- King’s
College London, Division of Imaging Sciences
and Biomedical Engineering, Fourth Floor
Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Carleen Cullinane
- Peter
MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir
Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cinzia Imberti
- King’s
College London, Division of Imaging Sciences
and Biomedical Engineering, Fourth Floor
Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Julia Baguña
Torres
- King’s
College London, Division of Imaging Sciences
and Biomedical Engineering, Fourth Floor
Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Samantha Y. A. Terry
- King’s
College London, Division of Imaging Sciences
and Biomedical Engineering, Fourth Floor
Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Peter Roselt
- Peter
MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Rodney
J. Hicks
- Peter
MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir
Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philip J. Blower
- King’s
College London, Division of Imaging Sciences
and Biomedical Engineering, Fourth Floor
Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
10
|
Bihari Z, Vultos F, Fernandes C, Gano L, Santos I, Correia JDG, Buglyó P. Synthesis, characterization and biological evaluation of a (67)Ga-labeled (η(6)-Tyr)Ru(η(5)-Cp) peptide complex with the HAV motif. J Inorg Biochem 2016; 160:189-97. [PMID: 26907798 DOI: 10.1016/j.jinorgbio.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/21/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Heterobimetallic complexes with the evolutionary, well-preserved, histidyl-alanyl-valinyl (HAV) sequence for cadherin targeting, an organometallic Ru core with anticancer activity and a radioactive moiety for imaging may hold potential as theranostic agents for cancer. Visible-light irradiation of the HAVAY-NH2 pentapeptide in the presence of [(η(5)-Cp)Ru(η(6)-naphthalene)](+) resulted in the formation of a full sandwich type complex, (η(6)-Tyr-RuCp)-HAVAY-NH2 in aqueous solution, where the metal ion is connected to the Tyr (Y) unit of the peptide. Conjugation of this complex to 2,2'-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-GA) and subsequent metalation of the resulting product with stable ((nat)Ga) and radioactive ((67)Ga) isotope yielded (nat)Ga/(67)Ga-NODA-GA-[(η(6)-Tyr-RuCp)-HAVAY-NH2]. The non-radioactive compounds were characterized by NMR spectroscopy and Mass Spectrometry. The cellular uptake and cytotoxicity of the radioactive and non-radioactive complexes, respectively, were evaluated in various human cancer cell lines characterized by different levels of N- or E-cadherins expression. Results from these studies indicate moderate cellular uptake of the radioactive complexes. However, the inhibition of the cell proliferation was not relevant.
Collapse
Affiliation(s)
- Zsolt Bihari
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O.Box 21, Hungary
| | - Filipe Vultos
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O.Box 21, Hungary.
| |
Collapse
|
11
|
Ma MT, Cullinane C, Waldeck K, Roselt P, Hicks RJ, Blower PJ. Rapid kit-based (68)Ga-labelling and PET imaging with THP-Tyr(3)-octreotate: a preliminary comparison with DOTA-Tyr(3)-octreotate. EJNMMI Res 2015; 5:52. [PMID: 26452495 PMCID: PMC4600075 DOI: 10.1186/s13550-015-0131-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ge/(68)Ga generators provide an inexpensive source of a PET isotope to hospitals without cyclotron facilities. The development of new (68)Ga-based molecular imaging agents and subsequent clinical translation would be greatly facilitated by simplification of radiochemical syntheses. We report the properties of a tris(hydroxypyridinone) conjugate of the SSTR2-targeted peptide, Tyr(3)-octreotate (TATE), and compare the (68)Ga-labelling and biodistribution of [(68)Ga(THP-TATE)] with the clinical radiopharmaceutical [(68)Ga(DOTATATE)]. METHODS A tris(hydroxypyridinone) with a pendant isothiocyanate group was conjugated to the primary amine terminus of H2N-PEG2-Lys(iv-Dde)(5)-TATE, and the resulting conjugate was deprotected to provide THP-TATE. THP-TATE was radiolabelled with (68)Ga(3+) from a (68)Ge/(68)Ga generator. In vitro uptake was assessed in SSTR2-positive 427-7 cells and SSTR2-negative 427 (parental) cells. Biodistribution of [(68)Ga(THP-TATE)] was compared with that of [(68)Ga(DOTATATE)] in Balb/c nude mice bearing SSTR2-positive AR42J tumours. PET scans were obtained 1 h post-injection, after which animals were euthanised and tissues/organs harvested and counted. RESULTS [(68)Ga(THP-TATE)] was radiolabelled and formulated rapidly in <2 min, in ≥95 % radiochemical yield at pH 5-6.5 and specific activities of 60-80 MBq nmol(-1) at ambient temperature. [(68)Ga(THP-TATE)] was rapidly internalised into SSTR2-positive cells, but not SSTR2-negative cells, and receptor binding and internalisation were specific. Animals administered [(68)Ga(THP-TATE)] demonstrated comparable SSTR2-positive tumour activity (11.5 ± 0.6 %ID g(-1)) compared to animals administered [(68)Ga(DOTATATE)] (14.4 ± 0.8 %ID g(-1)). Co-administration of unconjugated Tyr(3)-octreotate effectively blocked tumour accumulation of [(68)Ga(THP-TATE)] (2.7 ± 0.6 %ID g(-1)). Blood clearance of [(68)Ga(THP-TATE)] was rapid and excretion was predominantly renal, although compared to [(68)Ga(DOTATATE)], [(68)Ga(THP-TATE)] exhibited comparatively longer kidney retention. CONCLUSIONS Radiochemical synthesis of [(68)Ga(THP-TATE)] is significantly faster, proceeds under milder conditions, and requires less manipulation than that of [(68)Ga(DOTATATE)]. A (68)Ga-labelled tris(hydroxypyridinone) conjugate of Tyr(3)-octreotate demonstrates specificity and targeting affinity for SSTR2 receptors, with comparable in vivo targeting affinity to the clinical PET tracer, [(68)Ga(DOTATATE)]. Thus, peptide conjugates based on tris(hydroxypyridinones) are conducive to translation to kit-based preparation of PET tracers, enabling the expansion and adoption of (68)Ga PET in hospitals and imaging centres without the need for costly automated synthesis modules.
Collapse
Affiliation(s)
- Michelle T Ma
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly Waldeck
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Peter Roselt
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Blower
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
12
|
|
13
|
Holub J, Meckel M, Kubíček V, Rösch F, Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:122-34. [DOI: 10.1002/cmmi.1606] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Holub
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Marian Meckel
- Institute of Nuclear Chemistry; University Mainz; Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Frank Rösch
- Institute of Nuclear Chemistry; University Mainz; Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| |
Collapse
|
14
|
Ebenhan T, Chadwick N, Sathekge MM, Govender P, Govender T, Kruger HG, Marjanovic-Painter B, Zeevaart JR. Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl Med Biol 2014; 41:390-400. [DOI: 10.1016/j.nucmedbio.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
15
|
Pan D, Xu YP, Yang RH, Wang L, Chen F, Luo S, Yang M, Yan Y. A new (68)Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 2014; 46:1481-9. [PMID: 24633452 DOI: 10.1007/s00726-014-1718-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Bombesin (BBN) is a peptide exhibiting high affinity for the gastrin-releasing peptide receptor (GRPR), which is overexpressed on several types of cancers. Various GRPR antagonists and agonists have been labeled with radiometals for positron emission tomography (PET) imaging of GRPR-positive tumors. However, unfavorable hepatobiliary excretion such as high intestinal activity may prohibit their clinical utility for imaging abdominal cancer. In this study, the modified BBN peptide with a new hydrophilic linker was labeled with (68)Ga for PET imaging of GRPR-expressing PC-3 prostate cancer xenograft model. GRPR antagonists, MATBBN (Gly-Gly-Gly-Arg-Asp-Asn-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3) and ATBBN (D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3), were conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with (68)Ga. Partition coefficient and in vitro stability were also determined. GRPR binding affinity of both tracers was investigated by competitive radioligand binding assay. The in vivo receptor targeting potential and pharmacokinetic of (68)Ga-NOTA-MATBBN were also evaluated in PC-3 prostate tumor model and compared with those of (68)Ga-NOTA-ATBBN. NOTA-conjugated BBN analogs were labeled with (68)Ga within 20 min with a decay-corrected yield ranging from 90 to 95 % and a radiochemical purity of more than 98 %. The specific activity of (68)Ga-NOTA-MATBBN and (68)Ga-NOTA-ATBBN was at least 16.5 and 11.9 GBq/μmol, respectively. The radiotracers were stable in phosphate-buffered saline and human serum. (68)Ga-NOTA-MATBBN was more hydrophilic than (68)Ga-NOTA-ATBBN, as indicated by their log P values (-2.73 ± 0.02 vs. -1.20 ± 0.03). The IC50 values of NOTA-ATBBN and NOTA-MATBBN were similar (102.7 ± 1.18 and 124.6 ± 1.21 nM). The accumulation of (68)Ga-labeled GRPR antagonists in the subcutaneous PC-3 tumors could be visualized via small animal PET. The tumors were clearly visible, and the tumor uptakes of (68)Ga-NOTA-MATBBN and (68)Ga-NOTA-ATBBN were determined to be 4.19 ± 0.32, 4.00 ± 0.41, 2.93 ± 0.35 and 4.70 ± 0.40, 4.10 ± 0.30, 3.14 ± 0.30 %ID/g at 30, 60, and 120 min, respectively. There was considerable accumulation and retention of (68)Ga-NOTA-ATBBN in the liver and intestines. In contrast, the abdominal area does not have much retention of (68)Ga-NOTA-MATBBN. Biodistribution data were in accordance with the PET results, showing that (68)Ga-NOTA-MATBBN had more favorable pharmacokinetics and higher tumor to background ratios than those of (68)Ga-NOTA-ATBBN. At 1 h postinjection, the tumor to liver and intestine of (68)Ga-NOTA-MATBBN were 8.05 ± 0.56 and 21.72 ± 3.47 and the corresponding values of unmodified counterpart were 0.85 ± 0.23 and 3.45 ± 0.43, respectively. GRPR binding specificity was demonstrated by reduced tumor uptake of radiolabeled tracers after coinjection of an excess of unlabeled BBN peptides. (68)Ga-NOTA-MATBBN exhibited GRPR-targeting properties both in vitro and in vivo. The favorable characterizations of (68)Ga-NOTA-MATBBN such as convenient synthesis, specific GRPR targeting, high tumor uptake, and satisfactory pharmacokinetics warrant its further investigation for clinical cancer imaging.
Collapse
Affiliation(s)
- Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferreira MF, Pereira G, André JP, Prata MIM, Ferreira PMT, Martins JA, Geraldes CFGC. Ga[NO2A-N-(α-amino)propionate] chelates: synthesis and evaluation as potential tracers for 68Ga PET. Dalton Trans 2014; 43:8037-47. [DOI: 10.1039/c4dt00386a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A reversible pH-trigged N3O3⇆N4O2 coordination isomerism was demonstrated for the Ga[NO2A-N-(α-amino)propionate] chelate in the pH range 4–6.
Collapse
Affiliation(s)
| | - Goretti Pereira
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga, Portugal
| | - João P. André
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga, Portugal
| | - M. I. M. Prata
- ICNAS and IBILI
- Faculty of Medicine
- University of Coimbra
- 3000-548 Coimbra, Portugal
| | | | - José A. Martins
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga, Portugal
| | - Carlos F. G. C. Geraldes
- Department of Life Sciences
- Faculty of Science and Technology
- University of Coimbra
- 3001-401 Coimbra, Portugal
- Chemistry Centre
| |
Collapse
|
17
|
Martins AF, Prata MIM, Rodrigues SPJ, Geraldes CFGC, Riss PJ, Amor-Coarasa A, Burchardt C, Kroll C, Roesch F. Spectroscopic, radiochemical, and theoretical studies of the Ga3+-N-2-hydroxyethyl piperazine-N′-2-ethanesulfonic acid (HEPES buffer) system: evidence for the formation of Ga3+- HEPES complexes in68 Ga labeling reactions. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:265-73. [DOI: 10.1002/cmmi.1517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 08/20/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | - P. J. Riss
- The Wolfson Brain Imaging Centre; University of Cambridge; Box 65 Addenbrooke's Hospital; Cambridge; CB2 0QQ; UK
| | | | - C. Burchardt
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| | - C. Kroll
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| | - F. Roesch
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| |
Collapse
|
18
|
Berlinck RGS, Trindade-Silva AE, Santos MFC. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2012; 29:1382-406. [PMID: 22991131 DOI: 10.1039/c2np20071f] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chemistry and biology of organic natural guanidines are reviewed, including the isolation, structure determination, synthesis, biosynthesis and biological activities of alkaloids, non-ribosomal peptides, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| | | | | |
Collapse
|
19
|
Kim HJ, Kim DY, Park JH, Yang SD, Hur MG, Min JJ, Yu KH. Synthesis and evaluation of a novel 68Ga-labeled DOTA-benzamide derivative for malignant melanoma imaging. Bioorg Med Chem Lett 2012; 22:5288-92. [DOI: 10.1016/j.bmcl.2012.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/27/2022]
|
20
|
Synthesis and characterization of a (68)Ga-labeled N-(2-diethylaminoethyl)benzamide derivative as potential PET probe for malignant melanoma. Bioorg Med Chem 2012; 20:4915-20. [PMID: 22831797 DOI: 10.1016/j.bmc.2012.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Radiolabeled benzamides have been reported to be attractive agents for targeting malignant melanoma as they bind melanin and display high accumulation in melanoma cells. Herein, we report the synthesis and bioevaluation of a novel (68)Ga-labeled benzamide as a potential PET agent for malignant melanoma. The novel radiotracer was synthesized in good radiochemical yields (80% decay corrected yield) and high specific radioactivity (10 GBq/μmol). Cellular uptake of (68)Ga-SCN-NOTA-BZA was significantly higher in B16F10 cells (mouse melanoma) treated with L-tyrosine. Biodistribution and micro-PET studies of (68)Ga-SCN-NOTA-BZA in B16F10-bearing mice showed selective uptake into the tumor. The radiotracer was cleared via renal excretion without further metabolism. These results demonstrate that (68)Ga-SCN-NOTA-BZA is a potential PET probe for malignant melanoma.
Collapse
|
21
|
Chollet C, Bergmann R, Pietzsch J, Beck-Sickinger AG. Design, Evaluation, and Comparison of Ghrelin Receptor Agonists and Inverse Agonists as Suitable Radiotracers for PET Imaging. Bioconjug Chem 2012; 23:771-84. [DOI: 10.1021/bc2005889] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ralf Bergmann
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | |
Collapse
|
22
|
Ma MT, Neels OC, Denoyer D, Roselt P, Karas JA, Scanlon DB, White JM, Hicks RJ, Donnelly PS. Gallium-68 Complex of a Macrobicyclic Cage Amine Chelator Tethered to Two Integrin-Targeting Peptides for Diagnostic Tumor Imaging. Bioconjug Chem 2011; 22:2093-103. [DOI: 10.1021/bc200319q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Oliver C. Neels
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Delphine Denoyer
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Roselt
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | - Rodney J. Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Förster C, Schubert M, Pietzsch HJ, Steinbach J. Maleimido-functionalized NOTA derivatives as bifunctional chelators for site-specific radiolabeling. Molecules 2011; 16:5228-40. [PMID: 21697778 PMCID: PMC6264318 DOI: 10.3390/molecules16065228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/10/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022] Open
Abstract
Two basic and simple synthetic routes for mono- and bis-maleimide bearing 1,4,7-triazacyclononane-N,N’,N’’-triacetic acid (NOTA) chelators as new bifunctional chelators are described. The syntheses are characterized by their simplicity and short reaction times, as well as practical purification methods and acceptable to very good chemical yields. The usefulness of these two synthetic pathways is demonstrated by the preparation of a set of mono- and bis-maleimide functionalized NOTA derivatives. In conclusion, these two methods can easily be expanded to the syntheses of further tailored maleimide-NOTA chelators for diverse applications.
Collapse
Affiliation(s)
- Christian Förster
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, Dresden 01314, Germany.
| | | | | | | |
Collapse
|