1
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
2
|
Sanad SMH, Mekky AEM. Three-component regioselective synthesis and antibacterial evaluation of new arene-linked bis(pyrazolo[1,5- a]pyrimidine) hybrids. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2191854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Ahmed EA, Elgemeie GH, Azzam RA. Synthesis of new sulfapyrimidine and pyrazolo[1,5- a]pyrimidine derivatives. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2175694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Ebtsam A. Ahmed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Galal H. Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rasha A. Azzam
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Eze CC, Ezeokonkwo AM, Ugwu ID, Eze UF, Onyeyilim EL, Attah IS, Okonkwo IV. Azole-pyrimidine Hybrid Anticancer Agents: A Review of Molecular Structure, Structure Activity Relationship and Molecular Docking. Anticancer Agents Med Chem 2022; 22:2822-2851. [PMID: 35306990 DOI: 10.2174/1871520622666220318090147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Cancer has emerged as one of the leading causes of deaths globally partly due to the steady rise in anticancer drug resistance. Pyrimidine and pyrimidine-fused heterocycles are some of the privileged scaffolds in medicine, as they possess diverse biological properties. Pyrimidines containing azole nucleus possesses inestimable anticancer potency and has enormous potential to conduct the regulation of cellular pathways for selective anticancer activity. The present review outlines the molecular structure of pyrimidine-fused azoles with significant anticancer activity. The structure activity relationship and molecular docking studies have also been discussed. The current review is the first complete compilation of significant literature on the proposed topic from 2016 to 2020. The information contained in this review offers a useful insight to chemists in the design of new and potent anticancer azole-pyrimidine analogues.
Collapse
Affiliation(s)
- Chinweike Cosmas Eze
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Izuchukwu David Ugwu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Uchenna Florence Eze
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ebuka Leonard Onyeyilim
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Izuchi Solomon Attah
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ifeoma Vivian Okonkwo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
5
|
Vilas Borge V, Vaze J. A Comprehensive Study of Pyrimidine and Its Medicinal Applications. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Asati V, Anant A, Patel P, Kaur K, Gupta GD. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur J Med Chem 2021; 225:113781. [PMID: 34438126 DOI: 10.1016/j.ejmech.2021.113781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Pyrazolopyrimidine scaffold is one of the privileged heterocycles in drug discovery. This scaffold produced numerous biological activities in which anticancer is important one. Previous studies showed its importance in interactions with various receptors such as growth factor receptor, TGFBR2 gene, CDK2/cyclin E and Abl kinase, adenosine receptor, calcium-dependent Protein Kinase, Pim-1 kinase, Potent Janus kinase 2, BTK kinase, P21-activated kinase 1, extracellular signal-regulated kinase 2, histone lysine demethylase and Human Kinesin-5. However, there is a need of numerous studies for the discovery of target based potential compounds. The structure activity relationship studies may help to explore the generation of potential compounds in short time period. Therefore, in the present review we tried to explore the structural aspects of Pyrazolopyrimidine with their structure activity relationship against various targets for the development of potential compounds. The current review is the compilation of significant advances made on Pyrazolopyrimidines reported between 2015 and 2020.
Collapse
Affiliation(s)
- Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| | - Arjun Anant
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O'Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF. Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur J Med Chem 2021; 224:113736. [PMID: 34384944 DOI: 10.1016/j.ejmech.2021.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 μM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.
Collapse
Affiliation(s)
- Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Clara Charleton
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Robert W Devine
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark Kelada
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John M D Walsh
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gillian E Conway
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, United Kingdom
| | - Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Julie Rose Mae Mondala
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Furong Tian
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Brijesh Tiwari
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Gemma K Kinsella
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Denis O'Shea
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Australia
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James F Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Fernandes SG, Shah P, Khattar E. Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anticancer Agents Med Chem 2021; 22:469-484. [PMID: 34102988 DOI: 10.2174/1871520621666210608105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
DNA integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signaling pathways collectively named as DNA damage response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery, and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and identification of their structures have paved the way for the development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis, and focus on the inhibitors developed against several key DDR proteins.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
9
|
Gupta M, Concepcion CP, Fahey CG, Keshishian H, Bhutkar A, Brainson CF, Sanchez-Rivera FJ, Pessina P, Kim JY, Simoneau A, Paschini M, Beytagh MC, Stanclift CR, Schenone M, Mani DR, Li C, Oh A, Li F, Hu H, Karatza A, Bronson RT, Shaw AT, Hata AN, Wong KK, Zou L, Carr SA, Jacks T, Kim CF. BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Cancer Res 2020; 80:3841-3854. [PMID: 32690724 PMCID: PMC7501156 DOI: 10.1158/0008-5472.can-20-1744] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022]
Abstract
Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.
Collapse
Affiliation(s)
- Manav Gupta
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Biological and Biomedical Sciences PhD Program, Harvard University, Boston, Massachusetts
| | - Carla P Concepcion
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caroline G Fahey
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christine F Brainson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | | | - Patrizia Pessina
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Y Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Chendi Li
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Audris Oh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Fei Li
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Angeliki Karatza
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Cambridge, Massachusetts
| | - Carla F Kim
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts.
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
10
|
Chen CD, Zeldich E, Khodr C, Camara K, Tung TY, Lauder EC, Mullen P, Polanco TJ, Liu YY, Zeldich D, Xia W, Van Nostrand WE, Brown LE, Porco JA, Abraham CR. Small Molecule Amyloid-β Protein Precursor Processing Modulators Lower Amyloid-β Peptide Levels via cKit Signaling. J Alzheimers Dis 2020; 67:1089-1106. [PMID: 30776010 DOI: 10.3233/jad-180923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of neurotoxic amyloid-β (Aβ) peptides consisting of 39-43 amino acids, proteolytically derived fragments of the amyloid-β protein precursor (AβPP), and the accumulation of the hyperphosphorylated microtubule-associated protein tau. Inhibiting Aβ production may reduce neurodegeneration and cognitive dysfunction associated with AD. We have previously used an AβPP-firefly luciferase enzyme complementation assay to conduct a high throughput screen of a compound library for inhibitors of AβPP dimerization, and identified a compound that reduces Aβ levels. In the present study, we have identified an analog, compound Y10, which also reduced Aβ. Initial kinase profiling assays identified the receptor tyrosine kinase cKit as a putative Y10 target. To elucidate the precise mechanism involved, AβPP phosphorylation was examined by IP-western blotting. We found that Y10 inhibits cKit phosphorylation and increases AβPP phosphorylation mainly on tyrosine residue Y743, according to AβPP751 numbering. A known cKit inhibitor and siRNA specific to cKit were also found to increase AβPP phosphorylation and lower Aβ levels. We also investigated a cKit downstream signaling molecule, the Shp2 phosphatase, and found that known Shp2 inhibitors and siRNA specific to Shp2 also increase AβPP phosphorylation, suggesting that the cKit signaling pathway is also involved in AβPP phosphorylation and Aβ production. We further found that inhibitors of both cKit and Shp2 enhance AβPP surface localization. Thus, regulation of AβPP phosphorylation by small molecules should be considered as a novel therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ci-Di Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Christina Khodr
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kaddy Camara
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Tze Yu Tung
- Department of Biology, Boston University, Boston, MA, USA
| | - Emma C Lauder
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Patrick Mullen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Taryn J Polanco
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Yen-Yu Liu
- Department of Biology, Boston University, Boston, MA, USA
| | - Dean Zeldich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Bedford Geriatric Research Education Clinical Center, Bedford VA Medical Center, Bedford, MA, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lauren E Brown
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John A Porco
- Department of Chemistry, Boston University, Boston, MA, USA.,Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
New pyrazolopyrimidine derivatives with anticancer activity: Design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics. Bioorg Chem 2020; 100:103944. [PMID: 32450389 DOI: 10.1016/j.bioorg.2020.103944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022]
Abstract
In this study, new pyrazolopyrimidine derivatives were designed and evaluated for anticancer activity. PIM-1 inhibitiory activity were measured for the most potent compounds. Molecular docking study and molecular dynamics were also done. Thus, the novel derivatives of pyrazolo[1,5-a]pyrimidine have been synthesized and characterized using different spectroscopic techniques. HMBC and NOESY experiments were used to confirm regiospecific structure of pyrimidine ring. The newly synthesized derivatives were evaluated for their antitumor activities against HCT-116 and MCF-7 cell lines. These derivatives showed clear in vitro antitumor activities. Compound 5h showed the highest bioactivity (IC50 = 1.51 µM) against HCT-116 cell line. While, compound 6c was the most potent derivative, its IC50 was 7.68 µM against MCF-7 cell line. Compounds 5c, 5g, 5h, 6a and 6c showed PIM-1 inhibitory activity with IC50 of 1.26, 0.95, 0.60, 1.82, 0.67, respectively µM that could be correlated with their cytotoxic effect. Molecular docking study was done to predict the mode of binding of the target compounds inside PIM-1 active site. The molecular dynamic simulation was conducted in order to evaluate stability of binding of the tested compounds.
Collapse
|
12
|
Kawai K, Karuo Y, Tarui A, Sato K, Omote M. Effect of Structural Descriptors on the Design of Cyclin Dependent Kinase Inhibitors Using Similarity‐based Molecular Evolution. Mol Inform 2020; 39:e1900126. [DOI: 10.1002/minf.201900126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Kentaro Kawai
- Faculty of Pharmaceutical SciencesSetsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| | - Yukiko Karuo
- Faculty of Pharmaceutical SciencesSetsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical SciencesSetsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical SciencesSetsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical SciencesSetsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| |
Collapse
|
13
|
Synthesis and in-vitro anti-proliferative evaluation of some pyrazolo[1,5-a]pyrimidines as novel larotrectinib analogs. Bioorg Chem 2019; 94:103458. [PMID: 31785854 DOI: 10.1016/j.bioorg.2019.103458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
A series of 2-phenyl-7-(aryl)pyrazolo[1,5-a]pyrimidine-3-carbonitriles 11a-j and 2-phenyl-7-(aryl)pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 16a-c was synthesized by the reaction of 5-amino-3-phenyl-1H-pyrazole-4-carbonitrile (5) with 3-(dimethylamino)-1-arylprop-2-en-1-ones 6a-j or 2-aryl-3-(dimethylamino)acrylonitriles 12a-c, respectively. In addition, 7-amino-5-oxo-2-phenyl-4,5-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile (22) was prepared from the reaction of compound 5 with ethyl cyanoacetate. The anticancer activity of the newly synthesized compounds against Huh-7, HeLa, MCF-7 and MDA-MB231 cell lines showed moderate activity of compound 11f as anti-proliferative agent against Huh-7 cell line with IC50 = 6.3 µM when compared with doxorubicin (IC50 = 3.2 µM). On the other hand, compound 16b revealed potent anti-proliferative activity against HeLa cell line with IC50 = 7.8 µM when compared with doxorubicin (IC50 = 8.1 µM). Also compound 11i exhibited a promising anti-proliferative activity against MCF-7 cell line (IC50 = 3.0 µM) whereas IC50 of doxorubicin = 5.9 µM, finally compounds 11i and 16b have potent activity as anti-proliferative agents against MDA-MB231 cell line with IC50 = 4.32 and 5.74 µM, respectively when compared with doxorubicin (IC50 = 6.0 µM).
Collapse
|
14
|
Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicol In Vitro 2019; 60:87-96. [DOI: 10.1016/j.tiv.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
|
15
|
Loubidi M, Manga C, Tber Z, Bassoude I, Essassi EM, Berteina-Raboin S. One-Pot S N
Ar/Direct Pd-Catalyzed CH Arylation Functionalization of Pyrazolo[1,5- a
]pyrimidine at the C3 and C7 Positions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammed Loubidi
- Institut de Chimie Organique et Analytique; Université d'Orléans, UMR-CNRS 7311; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| | - Catherine Manga
- Institut de Chimie Organique et Analytique; Université d'Orléans, UMR-CNRS 7311; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| | - Zahira Tber
- Institut de Chimie Organique et Analytique; Université d'Orléans, UMR-CNRS 7311; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| | - Ibtissam Bassoude
- I. Bassoude, E-M. Essassi; Laboratoire de Chimie Organique Heterocyclique URAC 21; Mohammed V University in Rabat; BP 1014, avenue Ibn-Batouta Rabat Morocco
| | - El Mokhtar Essassi
- I. Bassoude, E-M. Essassi; Laboratoire de Chimie Organique Heterocyclique URAC 21; Mohammed V University in Rabat; BP 1014, avenue Ibn-Batouta Rabat Morocco
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique; Université d'Orléans, UMR-CNRS 7311; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| |
Collapse
|
16
|
Demjén A, Alföldi R, Angyal A, Gyuris M, Hackler L, Szebeni GJ, Wölfling J, Puskás LG, Kanizsai I. Synthesis, cytotoxic characterization, and SAR study of imidazo[1,2-b
]pyrazole-7-carboxamides. Arch Pharm (Weinheim) 2018; 351:e1800062. [DOI: 10.1002/ardp.201800062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- András Demjén
- AVIDIN Ltd.; Szeged Hungary
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | | | - Anikó Angyal
- AVIDIN Ltd.; Szeged Hungary
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | | | | | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - János Wölfling
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | - László G. Puskás
- AVIDIN Ltd.; Szeged Hungary
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | | |
Collapse
|
17
|
Aggarwal R, Kumar S. 5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines. Beilstein J Org Chem 2018; 14:203-242. [PMID: 29441143 PMCID: PMC5789427 DOI: 10.3762/bjoc.14.15] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The condensation of 5-aminopyrazole with various bielectrophilic moieties results in the formation of pyrazoloazines, an interesting array of fused heterocyclic systems. The development of new synthetic routes towards pyrazoloazines for their biological and medicinal exploration is an attractive area for researchers throughout the world. The present review focuses on various synthetic methods developed in the last decade for the synthesis of differently substituted pyrazoloazines by a broad range of organic reactions by means of 5-aminopyrazole as a precursor.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| |
Collapse
|
18
|
Paculová H, Kramara J, Šimečková Š, Fedr R, Souček K, Hylse O, Paruch K, Svoboda M, Mistrík M, Kohoutek J. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Tumour Biol 2017; 39:1010428317727479. [PMID: 29025359 DOI: 10.1177/1010428317727479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.
Collapse
Affiliation(s)
- Hana Paculová
- 1 Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Juraj Kramara
- 2 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Šárka Šimečková
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,4 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Karel Souček
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,4 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Ondřej Hylse
- 5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,6 Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- 5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,6 Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Svoboda
- 7 Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Martin Mistrík
- 2 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiří Kohoutek
- 1 Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
19
|
Mahajan P, Chashoo G, Gupta M, Kumar A, Singh PP, Nargotra A. Fusion of Structure and Ligand Based Methods for Identification of Novel CDK2 Inhibitors. J Chem Inf Model 2017; 57:1957-1969. [PMID: 28723151 DOI: 10.1021/acs.jcim.7b00293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclin dependent kinases play a central role in cell cycle regulation which makes them a promising target with multifarious therapeutic potential. CDK2 regulates various events of the eukaryotic cell division cycle, and the pharmacological evidence indicates that overexpression of CDK2 causes abnormal cell-cycle regulation, which is directly associated with hyperproliferation of cancer cells. Therefore, CDK2 is regarded as a potential target molecule for anticancer medication. Thus, to decline CDK2 activity by potential lead compounds has proved to be an effective treatment for cancer. The availability of a large number of X-ray crystal structures and known inhibitors of CDK2 provides a gateway to perform efficient computational studies on this target. With the aim to identify new chemical entities from commercial libraries, with increased inhibitory potency for CDK2, ligand and structure based computational drug designing approaches were applied. A druglike library of 50,000 compounds from ChemDiv and ChemBridge databases was screened against CDK2, and 110 compounds were identified using the parallel application of these models. On in vitro evaluation of 40 compounds, seven compounds were found to have more than 50% inhibition at 10 μM. MD studies of the hits revealed the stability of these inhibitors and pivotal role of Glu81 and Leu83 for binding with CDK2. The overall study resulted in the identification of four new chemical entities possessing CDK2 inhibitory activity.
Collapse
Affiliation(s)
- Priya Mahajan
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Gousia Chashoo
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Monika Gupta
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Kumar
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Parvinder Pal Singh
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Nargotra
- Discovery Informatics, ‡Cancer Pharmacology, §Medicinal Chemistry, and ∥Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| |
Collapse
|
20
|
Suzuki M, Yamamori T, Bo T, Sakai Y, Inanami O. MK-8776, a novel Chk1 inhibitor, exhibits an improved radiosensitizing effect compared to UCN-01 by exacerbating radiation-induced aberrant mitosis. Transl Oncol 2017; 10:491-500. [PMID: 28550769 PMCID: PMC5447387 DOI: 10.1016/j.tranon.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/08/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G2/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, MK-8776 demonstrated a more pronounced radiosensitizing effect than UCN-01, with lower cytotoxicity. Importantly, radiosensitization by MK-8776 can be achieved at doses as low as 2.5 Gy, which is a clinically applicable irradiation dose. MK-8776, but not UCN-01, exacerbated mitotic catastrophe (MC) and centrosome abnormalities, without affecting repair kinetics of DNA double strand breaks. Furthermore, live-cell imaging revealed that MK-8776 significantly abrogated the radiation-induced G2/M checkpoint, prolonged the mitotic phase, and enhanced aberrant mitosis. This suggests that Chk1 inhibition by MK-8776 activates a spindle assembly checkpoint and increases mitotic defects in irradiated EMT6 cells. In conclusion, we have shown that, at minimally toxic concentrations, MK-8776 enhances radiation-induced cell death through the enhancement of aberrant mitosis and MC, without affecting DNA damage repair.
Collapse
|
21
|
Samadder P, Suchánková T, Hylse O, Khirsariya P, Nikulenkov F, Drápela S, Straková N, Vaňhara P, Vašíčková K, Kolářová H, Binó L, Bittová M, Ovesná P, Kollár P, Fedr R, Ešner M, Jaroš J, Hampl A, Krejčí L, Paruch K, Souček K. Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation. Mol Cancer Ther 2017; 16:1831-1842. [PMID: 28619751 DOI: 10.1158/1535-7163.mct-17-0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G2-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.
Collapse
Affiliation(s)
- Pounami Samadder
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Ondřej Hylse
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Nicol Straková
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Petr Vaňhara
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Kateřina Vašíčková
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Hana Kolářová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Lucia Binó
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Miroslava Bittová
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic.,Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Peter Kollár
- Cellular Imaging Core Facility - CELLIM, CEITEC Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Milan Ešner
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic.,Cellular Imaging Core Facility - CELLIM, CEITEC Masaryk University, Brno, Czech Republic
| | - Josef Jaroš
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Lumír Krejčí
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic. .,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
22
|
Ismail NS, Ali GM, Ibrahim DA, Elmetwali AM. Medicinal attributes of pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur J Med Chem 2016; 126:298-352. [PMID: 27894044 DOI: 10.1016/j.ejmech.2016.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Pyrazolo[1,5-a]pyrimidine scaffold is one of the privileged hetrocycles in drug discovery. Its application as a buliding block for developing drug-like candidates has displayed broad range of medicinal properties such as anticancer, CNS agents, anti-infectious, anti-inflammatory, CRF1 antagonists and radio diagnostics. The structure-activity relationship (SAR) studies have acquired greater attention amid medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is plenty of room for the medicinal chemists to further exploit this privileged scaffold in developing potential drug candidates. The present review briefly outlines relevant synthetic strategies employed for pyrazolo[1,5-a]pyrimidine derivatives. It also extensively reveals significant biological properties along with SAR studies. To the best of our understanding current review is the first attempt made towards the compilation of significant advances made on pyrazolo[1,5-a]pyrimidines reported since 1980s.
Collapse
Affiliation(s)
- Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Girish A Hampannavar
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Venkata Narayana Palakollu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
24
|
Labroli MA, Dwyer MP, Poker C, Keertikar KM, Rossman R, Guzi TJ. A convergent preparation of the CHK1 inhibitor MK-8776 (SCH 900776). Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
26
|
Kamal A, Faazil S, Hussaini SA, Ramaiah MJ, Balakrishna M, Patel N, Pushpavalli S, Pal-Bhadra M. Synthesis and mechanistic aspects of 2-anilinonicotinyl-pyrazolo[1,5-a]pyrimidine conjugates that regulate cell proliferation in MCF-7 cells via estrogen signaling. Bioorg Med Chem Lett 2016; 26:2077-83. [DOI: 10.1016/j.bmcl.2016.02.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/15/2023]
|
27
|
Liu J, Song DZ, Tian YQ, Zhang XW, Bai YF, Wang D. Synthesis, Crystal Structure and bIological Activity of 5-(4-fluorophenyl)-N,N-dimethyl-7-(trifluoromethyl)Pyrazolo[1,5-a]Pyrimidine-3-carboxamide. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14532123759818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The title compound, 5-(4-fluorophenyl)-N,N-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine-3-carboxamide, has been synthesised by condensation of dimethylamine with 5-(4-fluorophenyl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine-3-carboxylic acid. This intermediate was prepared from ethyl 5-amino-1H-pyrazole-4-carboxylate by cyclisation with 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dione and then saponification with sodium hydroxide. The crystal structure of the title compound was determined. The compound possesses distinct effective inhibition on the proliferation of some cancer cell lines.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy of Liaoning University, Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, 110036, Liaoning, P.R. China
| | - Duan-Zheng Song
- College of Pharmacy of Liaoning University, Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, 110036, Liaoning, P.R. China
| | - Yan-Qiu Tian
- College of Life Science of Liaoning University, Shenyang, 110036, Liaoning, P.R. China
| | - Xin-Wei Zhang
- College of Pharmacy of Liaoning University, Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, 110036, Liaoning, P.R. China
| | - Yue-Fei Bai
- Northeast Pharmaceutical Group Co., Ltd, Shenyang, 110027, Liaoning, P.R. China
| | - Dan Wang
- College of Pharmacy of Liaoning University, Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, 110036, Liaoning, P.R. China
| |
Collapse
|
28
|
Sharma A, Luxami V, Paul K. Csp 2-O and C-C Bond Formation via Pd-Catalyzed Coupling Reaction of 2,4-Dichloroquinazoline. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alka Sharma
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| |
Collapse
|
29
|
Kaping S, Boiss I, Singha LI, Helissey P, Vishwakarma JN. A facile, regioselective synthesis of novel 3-(N-phenylcarboxamide)pyrazolo[1,5-a]pyrimidine analogs in the presence of KHSO4 in aqueous media assisted by ultrasound and their antibacterial activities. Mol Divers 2015; 20:379-90. [PMID: 26511367 DOI: 10.1007/s11030-015-9639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022]
Abstract
An environmentally benign, simple, efficient, and convenient route is described for the synthesis of novel pyrazolo[1,5-a]pyrimidine derivatives under ultrasound irradiation. Condensation of aminopyrazole 5 with formylated active proton compounds (6, 8, E-G, 12, and 15) furnished pyrazolopyrimidine (7, 9, 10, 13, and 16) in high-to-excellent yields. In comparison with conventional methods, ultrasound irradiation offers several advantages, such as shorter reaction time, higher yields, milder conditions, and environmental friendliness. The reaction is clean with excellent yields and reduces the use of solvents. X-ray crystallographic study of compound 7c confirmed the regioselectivity of the reaction. The antibacterial profile of the newly synthesized compounds was evaluated by cup and saucer method.
Collapse
Affiliation(s)
- Shunan Kaping
- Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Airport Road-Azara, Guwahati, 781017, India
| | - Ivee Boiss
- Department of Biotechnology, St. Anthonys College, Shillong, 793001, India
| | | | - Philippe Helissey
- Laboratoire de Chimie Thérapeutique, UMR CNRS No. 8638, Université Paris Descartes, Faculte des Sciences Pharmaceutiques et Biologiques, 75270, Paris Cedex 06, France
| | - Jai N Vishwakarma
- Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Airport Road-Azara, Guwahati, 781017, India.
| |
Collapse
|
30
|
Said SA, El-Sayed HA, Amr AEGE, Abdalla MM. Selective and Orally Bioavailable CHK1 Inhibitors of Some Synthesized Substituted Thieno[2,3-b]pyridine Candidates. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.659.671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Cuzzolin A, Sturlese M, Malvacio I, Ciancetta A, Moro S. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations. Molecules 2015; 20:9977-93. [PMID: 26035098 PMCID: PMC6272630 DOI: 10.3390/molecules20069977] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022] Open
Abstract
Virtual screening (VS) is a computational methodology that streamlines the drug discovery process by reducing costs and required resources through the in silico identification of potential drug candidates. Structure-based VS (SBVS) exploits knowledge about the three-dimensional (3D) structure of protein targets and uses the docking methodology as search engine for novel hits. The success of a SBVS campaign strongly depends upon the accuracy of the docking protocol used to select the candidates from large chemical libraries. The identification of suitable protocols is therefore a crucial step in the setup of SBVS experiments. Carrying out extensive benchmark studies, however, is usually a tangled task that requires users' proficiency in handling different file formats and philosophies at the basis of the plethora of existing software packages. We present here DockBench 1.0, a platform available free of charge that eases the pipeline by automating the entire procedure, from docking benchmark to VS setups. In its current implementation, DockBench 1.0 handles seven docking software packages and offers the possibility to test up to seventeen different protocols. The main features of our platform are presented here and the results of the benchmark study of human Checkpoint kinase 1 (hChk1) are discussed as validation test.
Collapse
Affiliation(s)
- Alberto Cuzzolin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
| | - Ivana Malvacio
- INFIQC-Organic Chemistry Department, School of Chemical Sciences, National University of Cordoba, Cordoba, CP 5000, Argentine.
| | - Antonella Ciancetta
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
| |
Collapse
|
32
|
Devi AS, Kaping S, Vishwakarma JN. A facile environment-friendly one-pot two-step regioselective synthetic strategy for 3,7-diarylpyrazolo[1,5-a]pyrimidines related to zaleplon and 3,6-diarylpyrazolo[1,5-a]pyrimidine-7-amines assisted by KHSO₄ in aqueous media. Mol Divers 2015; 19:759-71. [PMID: 26016724 DOI: 10.1007/s11030-015-9606-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/16/2015] [Indexed: 12/01/2022]
Abstract
3-Aminopyrazoles required for the synthesis of pyrazolo[1,5-a]pyrimidines were obtained by the reaction of enaminonitriles with hydrazine hydrate. The resulting aminopyrazoles are reacted with formylated acetophenones under reflux at [Formula: see text] assisted by KHSO[Formula: see text] in aqueous media to form regioselectively 3,7-diarylpyrazolo[1,5-a]pyrimidines and 3,6-diarylpyrazolo[1,5-a]pyrimidine-7-amines. X-ray crystallography of selected compounds 5b and 7i further confirmed the regioselective formation of these products.
Collapse
Affiliation(s)
- Asem Satyapati Devi
- Organic Research Lab., Department of Chemical Science, Assam Don Bosco University, Airport Road-Azara, Guwahati, Assam, 781017, India
| | - Shunan Kaping
- Organic Research Lab., Department of Chemical Science, Assam Don Bosco University, Airport Road-Azara, Guwahati, Assam, 781017, India
| | - Jai Narain Vishwakarma
- Organic Research Lab., Department of Chemical Science, Assam Don Bosco University, Airport Road-Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
33
|
Song P, Chen M, Ma X, Xu L, Liu T, Zhou Y, Hu Y. Identification of novel inhibitors of Aurora A with a 3-(pyrrolopyridin-2-yl)indazole scaffold. Bioorg Med Chem 2015; 23:1858-68. [DOI: 10.1016/j.bmc.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 11/24/2022]
|
34
|
Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F, Parry D, Shumway S, Grabowsky JA, Freshwater T, Sorge C, Kang SP, Isaacs R, Munster PN. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 2015; 33:1060-6. [PMID: 25605849 DOI: 10.1200/jco.2014.57.5027] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics, and recommended phase II dose of MK-8776 (SCH 900776), a potent, selective checkpoint kinase 1 (Chk1) inhibitor, as monotherapy and in combination with gemcitabine in a first-in-human phase I clinical trial in patients with advanced solid tumor malignancies. PATIENTS AND METHODS Forty-three patients were treated by intravenous infusion with MK-8776 at seven dose levels ranging from 10 to 150 mg/m(2) as monotherapy and then in combination with gemcitabine 800 mg/m(2) (part A, n = 26) or gemcitabine 1,000 mg/m(2) (part B, n = 17). Forty percent of patients had three or more prior treatment regimens, and one third of patients had previously received gemcitabine. RESULTS As monotherapy, MK-8776 was well tolerated, with QTc prolongation (19%), nausea (16%), fatigue (14%), and constipation (14%) as the most frequent adverse effects. Combination therapy demonstrated a higher frequency of adverse effects, predominantly fatigue (63%), nausea (44%), decreased appetite (37%), thrombocytopenia (32%), and neutropenia (24%), as well as dose-related, transient QTc prolongation (17%). The median number of doses of MK-8776 administered was five doses, with relative dose-intensity of 0.96. Bioactivity was assessed by γ-H2AX ex vivo assay. Of 30 patients evaluable for response, two showed partial response, and 13 exhibited stable disease. CONCLUSION MK-8776 was well tolerated as monotherapy and in combination with gemcitabine. Early evidence of clinical efficacy was observed. The recommended phase II dose is MK-8776 200 mg plus gemcitabine 1,000 mg/m(2) on days 1 and 8 of a 21-day cycle.
Collapse
Affiliation(s)
- Adil I Daud
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ.
| | - Michelle T Ashworth
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan Strosberg
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan W Goldman
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Mendelson
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Gregory Springett
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Alan P Venook
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Sabine Loechner
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Lee S Rosen
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Frances Shanahan
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Parry
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Stuart Shumway
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jennifer A Grabowsky
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Tomoko Freshwater
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Christopher Sorge
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Soonmo Peter Kang
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Randi Isaacs
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Pamela N Munster
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| |
Collapse
|
35
|
Synthesis and biological evaluation of 7-trifluoromethylpyrazolo[1,5- a ]pyrimidines as anti-inflammatory and antimicrobial agents. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Lv M, Ma S, Tian Y, Zhang X, Lv W, Zhai H. Computational studies on the binding mechanism between triazolone inhibitors and Chk1 by molecular docking and molecular dynamics. MOLECULAR BIOSYSTEMS 2014; 11:275-86. [PMID: 25372494 DOI: 10.1039/c4mb00449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chk1, a serine/threonine protein kinase that participates in transducing DNA damage signals, is an attractive target due to its involvement in tumor initiation and progression. As a novel Chk1 inhibitor, the triazolone's bioactivity mechanism is not clear. In this study, we carried out an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations to identify the key factors necessary for the bioactivities. With the aim of discerning the structural features that affect the inhibitory activity of triazolones, MK-8776, a Chk1 inhibitor that reached the clinical stage, was also used as a reference for simulations. A comparative analysis of the triazolone inhibitors at the molecular level offers valuable insight into the structural and energetic properties. A general feature is that all the studied inhibitors bind in the pocket characterized by residues Leu14, Val22, Ala35, Glu84, Tyr85, Cys86, and Leu136 of Chk1. Moreover, introducing hydrophobic groups into triazolone inhibitors is favorable for binding to Chk1, which is corroborated by residue Leu136 with a relatively large difference in the contribution between MK-8776 and five triazolones to the total binding free energies. A hydrogen bond between the polar hydrogen atoms at R1 and Cys86 can facilitate proper placement of the inhibitor in the binding pocket of Chk1 that favors binding. However, the introduction of hydrophilic groups into the R2 position diminishes binding affinity. The information provided by this research is of benefit for further rational design of novel promising inhibitors of Chk1.
Collapse
Affiliation(s)
- Min Lv
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Design, synthesis and biological evaluation of thienopyridinones as Chk1 inhibitors. Bioorg Med Chem 2014; 22:4882-92. [DOI: 10.1016/j.bmc.2014.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 01/10/2023]
|
38
|
Li M, Zhao BX. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013). Eur J Med Chem 2014; 85:311-40. [PMID: 25104650 DOI: 10.1016/j.ejmech.2014.07.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Condensed pyrazole derivatives are important heterocyclic compounds due to their excellent biological activities and have been widely applied in pharmaceutical and agromedical fields. In recent years, numerous condensed pyrazole derivatives have been synthesized and advanced to clinic studies with various biological activities. In this review, we summarized the reported synthesis methods of condensed pyrazole derivatives from 2010 until now. All compounds are divided into three parts according to the rings connected to pyrazole-ring, i.e. [5, 5], [5,F 6], and [5, 7]-condensed pyrazole derivatives. The biological activities and applications in pharmaceutical fields are briefly introduced to offer an orientation for the design and synthesis of condensed pyrazole derivatives with good biological activities.
Collapse
Affiliation(s)
- Meng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
39
|
Balupuri A, Balasubramanian PK, Gadhe CG, Cho SJ. Docking-based 3D-QSAR study of pyridyl aminothiazole derivatives as checkpoint kinase 1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:651-671. [PMID: 24911214 DOI: 10.1080/1062936x.2014.923040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Checkpoint kinase 1 (Chk1) is a promising target for the design of novel anticancer agents. In the present work, molecular docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on pyridyl aminothiazole derivatives as Chk1 inhibitors. AutoDock was used to determine the probable binding conformations of all the compounds inside the active site of Chk1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed based on the docking conformations and alignments. The CoMFA model produced statistically significant results with a cross-validated correlation coefficient (q2) of 0.608 and a coefficient of determination (r2) of 0.972. The reliable CoMSIA model with q2 of 0.662 and r2 of 0.970 was obtained from the combination of steric, electrostatic and hydrogen bond acceptor fields. The predictive power of the models were assessed using an external test set of 14 compounds and showed reasonable external predictabilities (r(2)pred) of 0.668 and 0.641 for CoMFA and CoMSIA models, respectively. The models were further evaluated by leave-ten-out cross-validation, bootstrapping and progressive scrambling analyses. The study provides valuable information about the key structural elements that are required in the rational design of potential drug candidates of this class of Chk1 inhibitors.
Collapse
Affiliation(s)
- A Balupuri
- a Department of Bio-New Drug Development, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | | | | | | |
Collapse
|
40
|
Li Y, Gao W, Li F, Wang J, Zhang J, Yang Y, Zhang S, Yang L. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. MOLECULAR BIOSYSTEMS 2014; 9:2266-81. [PMID: 23864105 DOI: 10.1039/c3mb70186g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CDK2, which interacts with cyclin A and cyclin E, is an important member of the CDK family. Having been proved to be associated with many diseases for its vital role in cell cycle, CDK2 is a promising target of anti-cancer drugs dealing with cell cycle disorders. In the present work, a total of 111 pyrazolo[1,5-a]pyrimidines (PHTPPs) as CDK2/cyclin A inhibitors were studied to conduct three-dimensional quantitative structure-activity (3D-QSAR) analyses. The optimal comparative molecular similarity indices analysis (CoMSIA) model shows that Q(2) = 0.516, Rncv(2) = 0.912, Rpre(2) = 0.914, Rm(2) = 0.843, SEP = 0.812, SEE = 0.347 with 10 components using steric, hydrophobic and H-bond donor field descriptors, indicating its effective internal and external predictive capacity. The contour maps further indicate that (1) bulky substituents in R1 are beneficial while H-bond donor groups at this position are detrimental; (2) hydrophobic contributions in the R2 area are favorable; (3) large and hydrophilic groups are well tolerated at the R3 position (a close H-bond donor moiety is favorable while a distal H-bond donor moiety in this area is disfavored); (4) bulky and hydrophobic features in the R4 region are beneficial for the biological activities and (5) the 7-N-aryl substitution is crucial to boost the inhibitory activities of the PHTPP inhibitors. Finally, docking and MD simulations demostrate that PHTPP derivatives are stabilized in a 'flying bat' conformation mainly through the H-bond interactions and hydrophobic contacts. Comparative studies indicate that PHTPP derivatives fit well within the ATP binding cleft in CDK2, with the core heterocyclic ring overlapping significantly with the adenine group of ATP despite a small deflection. In comparison to numerous other inhibitors binding to the ATP pocket, PHTPP analogues follow the binding fashion of purine inhibitors of this kinase. It is anticipated that the binding mechanism and structural features of PHTPP inhibitors studied in the present work will benefit the discovery of more potent CDK2 inhibitors, and the valid pyrazolo[1,5-a]pyrimidine-7-N-yl inhibitors will soon emerge from the large number of screening programmes to enter in clinical studies.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Meng Z, Sun B, Reddy PA, Siddiqui MA. Acid-mediated cyclizations of SEM-protected heterocyclic anilines and adjacent hydroxyls or enol-ethers. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Large JM, Osborne SA, Smiljanic-Hurley E, Ansell KH, Jones HM, Taylor DL, Clough B, Green JL, Holder AA. Imidazopyridazines as potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1): Preparation and evaluation of pyrazole linked analogues. Bioorg Med Chem Lett 2013; 23:6019-24. [PMID: 24035097 PMCID: PMC3809513 DOI: 10.1016/j.bmcl.2013.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/28/2022]
Abstract
The structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further improve key ADME parameters by means of lowering logD was identified, and this was achieved by replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered key examples with useful in vitro activity and ADME profiles, good selectivity against a human kinase panel and improved levels of lipophilic ligand efficiency. These new analogues thus provide a credible additional route to further development of the series.
Collapse
Affiliation(s)
- Jonathan M Large
- Centre for Therapeutics Discovery, MRC Technology, Mill Hill, London NW7 1AD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dwyer MP, Keertikar K, Paruch K, Alvarez C, Labroli M, Poker C, Fischmann TO, Mayer-Ezell R, Bond R, Wang Y, Azevedo R, Guzi TJ. Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: a template-based approach. Bioorg Med Chem Lett 2013; 23:6178-82. [PMID: 24091081 DOI: 10.1016/j.bmcl.2013.08.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/01/2022]
Abstract
The synthesis and hit-to-lead SAR development from a pyrazolo[1,5-a]pyrimidine-derived hit 5 to the identification of a series of potent, pan-Pim inhibitors such as 11j are described.
Collapse
Affiliation(s)
- Michael P Dwyer
- Department of Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2013; 8:621-40. [PMID: 23594139 DOI: 10.1517/17460441.2013.788496] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Checkpoint kinase (CHK) inhibitors offer the promise of enhancing the effectiveness of widely prescribed cancer chemotherapies and radiotherapy by inhibiting the DNA damage response, as well as the potential for single agent efficacy. AREAS COVERED This article surveys structural insights into the checkpoint kinases CHK1 and CHK2 that have been exploited to enhance the selectivity and potency of small molecule inhibitors. Furthermore, the authors review the use of mechanistic cellular assays to guide the optimisation of inhibitors. Finally, the authors discuss the status of the current clinical candidates and emerging new clinical contexts for CHK1 and CHK2 inhibitors, including the prospects for single agent efficacy. EXPERT OPINION Protein-bound water molecules play key roles in structural features that can be targeted to gain high selectivity for either enzyme. The results of early phase clinical trials of checkpoint inhibitors have been mixed, but significant progress has been made in testing the combination of CHK1 inhibitors with genotoxic chemotherapy. Second-generation CHK1 inhibitors are likely to benefit from increased selectivity and oral bioavailability. While the optimum therapeutic context for CHK2 inhibition remains unclear, the emergence of single agent preclinical efficacy for CHK1 inhibitors in specific tumour types exhibiting constitutive replication stress represents exciting progress in exploring the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Thomas P Matthews
- Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, London SM2 5NG, UK
| | | | | |
Collapse
|
45
|
Peculiarities of cyclization of ethyl 2-ethoxymethylene-3-oxo-3-(polyfluoroalkyl)propionates with 3-amino-5-hydroxypyrazole. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Hafez TS, Osman SA, Yosef HAA, El-All ASA, Hassan AS, El-Sawy AA, Abdallah MM, Youns M. Synthesis, Structural Elucidation, and In Vitro Antitumor Activities of Some Pyrazolopyrimidines and Schiff Bases Derived from 5-Amino-3-(arylamino)-1H-pyrazole-4-carboxamides. Sci Pharm 2013; 81:339-57. [PMID: 23833708 PMCID: PMC3700070 DOI: 10.3797/scipharm.1211-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022] Open
Abstract
The reaction of 5-amino-3-(arylamino)-1H-pyrazole-4-carboxamides 1a,b with acetylacetone 2 and arylidenemalononitriles 5a–c yielded the pyrazolo[1,5-a]-pyrimidine derivatives 4a,b and 7a–f respectively. On the other hand, Schiff bases 9a,b and 12a–j were obtained upon treatment of carboxamides 1a,b with isatin 8 and some selected aldehydes 11a–e. The newly synthesized compounds were characterized by analytical and spectroscopic data. Representative examples of the synthesized products 4a,b, 7e, 7f, 9b, 12b–f, 12h, and 12j were screened for their in vitro antitumor activities against different human cancer cell lines and the structure-activity relationship (SAR) was discussed.
Collapse
Affiliation(s)
- Taghrid S Hafez
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, El-Behoos Street, Dokki, 12622 Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Huang X, Cheng CC, Fischmann TO, Duca JS, Yang X, Richards M, Shipps GW. Discovery of a Novel Series of CHK1 Kinase Inhibitors with a Distinctive Hinge Binding Mode. ACS Med Chem Lett 2012; 3:123-8. [PMID: 24900442 DOI: 10.1021/ml200249h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023] Open
Abstract
A novel series of CHK1 inhibitors with a distinctive hinge binding mode, exemplified by 2-aryl-N-(2-(piperazin-1-yl)phenyl)thiazole-4-carboxamide, was discovered through high-throughput screening using the affinity selection-mass spectrometry (AS-MS)-based Automated Ligand Identification System (ALIS) platform. Structure-based ligand design and optimization led to significant improvements in potency to the single digit nanomolar range and hundred-fold selectivity against CDK2.
Collapse
Affiliation(s)
- Xiaohua Huang
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Cliff C. Cheng
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Thierry O. Fischmann
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - José S. Duca
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Xianshu Yang
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Matthew Richards
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Gerald W. Shipps
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| |
Collapse
|
49
|
Structural requirements of pyrimidine, thienopyridine and ureido thiophene carboxamide-based inhibitors of the checkpoint kinase 1: QSAR, docking, molecular dynamics analysis. J Mol Model 2012; 18:3227-42. [DOI: 10.1007/s00894-011-1321-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/23/2011] [Indexed: 11/27/2022]
|
50
|
Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther 2011; 10:591-602. [PMID: 21321066 DOI: 10.1158/1535-7163.mct-10-0928] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Checkpoint kinase 1 (CHK1) is an essential serine/threonine kinase that responds to DNA damage and stalled DNA replication. CHK1 is essential for maintenance of replication fork viability during exposure to DNA antimetabolites. In human tumor cell lines, ablation of CHK1 function during antimetabolite exposure led to accumulation of double-strand DNA breaks and cell death. Here, we extend these observations and confirm ablation of CHK2 does not contribute to these phenotypes and may diminish them. Furthermore, concomitant suppression of cyclin-dependent kinase (CDK) activity is sufficient to completely antagonize the desired CHK1 ablation phenotypes. These mechanism-based observations prompted the development of a high-content, cell-based screen for γ-H2AX induction, a surrogate marker for double-strand DNA breaks. This mechanism-based functional approach was used to optimize small molecule inhibitors of CHK1. Specifically, the assay was used to mechanistically define the optimal in-cell profile with compounds exhibiting varying degrees of CHK1, CHK2, and CDK selectivity. Using this approach, SCH 900776 was identified as a highly potent and functionally optimal CHK1 inhibitor with minimal intrinsic antagonistic properties. SCH 900776 exposure phenocopies short interfering RNA-mediated CHK1 ablation and interacts synergistically with DNA antimetabolite agents in vitro and in vivo to selectively induce dsDNA breaks and cell death in tumor cell backgrounds.
Collapse
|