1
|
Brandt SD, Kavanagh PV, Westphal F, Dreiseitel W, Dowling G, Bowden MJ, Williamson JPB. Synthetic cannabinoid receptor agonists: Analytical profiles and development of QMPSB, QMMSB, QMPCB, 2F-QMPSB, QMiPSB, and SGT-233. Drug Test Anal 2020; 13:175-196. [PMID: 32880103 DOI: 10.1002/dta.2913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/07/2022]
Abstract
A diverse assortment of molecules designed to explore the cannabinoid receptor system and considered new psychoactive substances (NPS) have become known as synthetic cannabinoid receptor agonists (SCRAs). One group of SCRAs that has received little attention involves those exhibiting sulfamoyl benzoate, sulfamoyl benzamide, and N-benzoylpiperidine based structures. In this study, quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate (QMPSB), quinolin-8-yl 4-methyl-3-(morpholine-4-sulfonyl)benzoate (QMMSB), quinolin-8-yl 4-methyl-3-(piperidine-1-carbonyl)benzoate (QMPCB, SGT-11), quinolin-8-yl 3-(4,4-difluoropiperidine-1-sulfonyl)-4-methylbenzoate (2F-QMPSB, QMDFPSB, SGT-13), quinolin-8-yl 4-methyl-3-[(propan-2-yl)sulfamoyl]benzoate (QMiPSB, SGT-46), and 3-(4,4-difluoropiperidine-1-sulfonyl)-4-methyl-N-(2-phenylpropan-2-yl)benzamide (SGT-233) were extensively characterized (including data on impurities). The analytical profiles may be useful to researchers and scientists who deal with the emergence of NPS during forensic and clinical investigations. The detection of QMPSB was first published in 2016 but it is worth noting that Stargate International, a company originally formed to develop harm reduction solutions, were involved in the investigation and development of these six compounds for potential release between 2011 and early 2014. Whilst information on the prevalence of use of these particular compounds at the present time is limited, one of the key outcomes of the research performed by Stargate International reviewed here was to set the stage for the quinolin-8-yl ester head group that ultimately led to hybridization with an N-alkyl-1H-indole core to give SGT-21 and SGT-32, which became later known as PB-22 (QMPSB/JWH-018 hybrid) and BB-22, respectively, thus, opening the door to a range of SCRAs carrying the quinolin-8-yl head group from about 2012 onwards.
Collapse
Affiliation(s)
- Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, Ireland
| | - Folker Westphal
- Section Narcotics/Toxicology, State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | | | - Geraldine Dowling
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, Ireland.,Department of Life Sciences, School of Science, Sligo Institute of Technology, Ash Lane, Sligo, Ireland
| | | | | |
Collapse
|
2
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
3
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
4
|
Venkatapuram P, Tumma S, Dandu S, Chokkappagari P. Synthesis of Amido-linked Oxazolyl/Thiazolyl/Imidazolyl Pyrazoles and Isoxazoles. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Sreelatha Tumma
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Seenaiah Dandu
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | |
Collapse
|
5
|
Han S, Thatte J, Buzard DJ, Jones RM. Therapeutic Utility of Cannabinoid Receptor Type 2 (CB2) Selective Agonists. J Med Chem 2013; 56:8224-56. [DOI: 10.1021/jm4005626] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangdon Han
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Jayant Thatte
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Daniel J. Buzard
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Robert M. Jones
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| |
Collapse
|
6
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Yang Z, Truong TN, Pham TAN, Lee JW, Kim SS, Park H. Synthesis of 1,5-diarylhaloimidazole analogs and their inhibitory activities against PGE₂ production from LPS-treated RAW 264.7 cells. Bioorg Med Chem 2012; 20:6256-9. [PMID: 23040893 DOI: 10.1016/j.bmc.2012.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
A number of 1,5-diarylimidazole analogs were synthesized and evaluated their inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin E(2) production. Reactions of 1,5-diarylimidazoles with halogenating reagents (NCS, NBS, NIS) afforded halogenated analogs. Among the analogs tested, compounds Ib, IIa, IIb and IIe exhibited significantly improved inhibitory activities against COX-2-mediated PGE(2) production from LPS-induced RAW 264.7 cells compared to those of the parent 1,5-diarylimidazoles. Especially, the analogs Ib (IC(50)=0.55 μM) and IIa (IC(50)=0.58 μM) showed best results. Halogenation on the 1,5-diarylimidazole ring enhanced inhibitory activities against COX-2 catalyzed PGE(2) production, however, inhibitory activities were significantly varied by position(s) and species of the substituted halogen(s).
Collapse
Affiliation(s)
- Zunhua Yang
- College of Pharmacy, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
GILBERT EJ, LUNN CA. Recent Advances in Selective CB2 Agonists for the Treatment of Pain. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cannabinoid CB2 receptor is one of a family of GPCRs that mediate the effects of endocannabinoids. Several agonists of this receptor are currently in clinical trials for the treatment of pain and inflammation, indications that have been validated by pre-clinical studies on agonists and in receptor knockout mice. Key to the clinical advancement of CB2 agonists is achieving selectivity over the related CB1 receptor, whose activation results in undesirable CNS effects, limiting therapeutic utility. A variety of CB2 receptor agonist chemotypes are reviewed including mono-, bi- and tricyclic cores and bi- and triaryl cores. Pharmacology, with a focus on selectivity requirements and a variety of pre-clinical animal models to assess activity and selectivity, is presented.
Collapse
Affiliation(s)
- E. J. GILBERT
- Department of Medicinal Chemistry Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| | - C. A. LUNN
- Department of In Vitro Pharmacology Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| |
Collapse
|
9
|
Huang Y, Zu X, Wu F, Xu J, Wu X, Yao H. Highly efficient oxidation of 2-imidazoline-5-carboxylic derivatives to imidazole-5-carboxylic derivatives by dioxygen. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Chianese G, Fattorusso E, Taglialatela-Scafati O, Bavestrello G, Calcinai B, Dien HA, Ligresti A, Di Marzo V. Desulfohaplosamate, a new phosphate-containing steroid from Dasychalina sp., is a selective cannabinoid CB2 receptor ligand. Steroids 2011; 76:998-1002. [PMID: 21530566 DOI: 10.1016/j.steroids.2011.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 11/30/2022]
Abstract
From the polar organic extract of the Indonesian sponge Dasychalina sp. we have isolated haplosamate A (1), a unique C(28) sterol containing a sulfate group at C-3 and a methyl phosphate at C-15, along with its new desulfo analogue 2, whose structure has been secured by detailed NMR investigation. Compounds 1 and 2, as well as their semi-synthetic analogues 3-5, have been evaluated for interaction with CB(1) and CB(2) receptors through a binding test. Desulfohaplosamate (2) showed a selective affinity for CB(2) receptors in the low μM range, while a semi-synthetic derivative with cleaved ring B showed a complete loss of affinity for both receptors, highlighting the importance of an intact steroid nucleus. To our knowledge, haplosamate derivatives represent the first CB receptor ligands belonging to the class of steroids.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|