1
|
Kokuev AO, Sukhorukov AY. Copper-Catalyzed Alkynylation of In Situ-Generated Azoalkenes: An Umpolung Approach to Pyrazoles. Org Lett 2024; 26:6999-7003. [PMID: 39116281 DOI: 10.1021/acs.orglett.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A straightforward umpolung approach to regioselectively N-protected polysubstituted pyrazoles starting from aromatic α-halohydrazones and terminal alkynes has been developed. In this process, azoalkenes generated in situ from α-halohydrazones are involved in the Cu(I)-catalyzed Michael addition with alkynes to give α-alkynyl-substituted hydrazones that cyclize to give the target pyrazoles in 37-85% yield. The method employs readily available starting materials and features good functional group compatibility (nitro, sulfonyl, cyano, trimethylsilyl, and primary bromoalkyl groups, esters, and alcohols are tolerated) and scalability.
Collapse
Affiliation(s)
- Aleksandr O Kokuev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Firdaus JU, Siddiqui N, Alam O, Manaithiya A, Chandra K. Pyrazole scaffold-based derivatives: A glimpse of α-glucosidase inhibitory activity, SAR, and route of synthesis. Arch Pharm (Weinheim) 2023; 356:e2200421. [PMID: 36617511 DOI: 10.1002/ardp.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
The α-glucosidase is a validated target to develop drugs for treating type 2 diabetes mellitus. The existing α-glucosidase inhibitors have certain shortcomings related to side effects and route of synthesis. Accordingly, it is inevitable to develop new chemical templates as α-glucosidase inhibitors. Pyrazole derivatives have a special place in medicinal chemistry because of various biological activities. Recently, pyrazole-based heterocyclic compounds have emerged as a promising scaffold to develop α-glucosidase inhibitors. This study focuses on the recently reported pyrazole-based α-glucosidase inhibitors, including their biological activity (in vivo, in vitro, and in silico), structure-activity relationship, and ways of synthesis. The literature revealed the development of several promising pyrazole-based α-glucosidase inhibitors and new synthetic routes for their preparation. The encouraging α-glucosidase inhibitory results of the pyrazole-based heterocyclic compounds make them an attractive target for further research. The authors also foresee the arrival of the pyrazole-based α-glucosidase inhibitors in clinical practice.
Collapse
Affiliation(s)
- Jannat Ul Firdaus
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Azimi F, Azizian H, Najafi M, Khodarahmi G, Saghaei L, Hassanzadeh M, Ghasemi JB, Faramarzi MA, Larijani B, Hassanzadeh F, Mahdavi M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor. Sci Rep 2021; 11:20776. [PMID: 34675367 PMCID: PMC8531348 DOI: 10.1038/s41598-021-99899-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2-164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Motahareh Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Maruoka H, Nagabuchi H, Masumoto E, Okabe-Nakahara F. Synthesis and Reaction of Novel Spiro Pyrazol-3-ones Containing Oxirane Moiety. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Pratima Yadav, Kumar R, Tewari AK. Docking Simulation and Anti-Inflammatory Profile of Some Synthesized Heterodimer of Pyrazole. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
GSK-3-associated signaling is crucial to virus infection of cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118767. [PMID: 32522661 DOI: 10.1016/j.bbamcr.2020.118767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Signal transduction pathways play important roles in virus infection, replication, and associated pathogenesis. Some of the best understood cell signaling networks are crucial to virus infections such the mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and the WNT/β-catenin pathways. Glycogen synthase kinase-3 (GSK-3) is a lesser known signaling molecule in the field of virus research. Interestingly, GSK-3 forms the crux of multiple cell signaling pathways. However, recent studies indicate that GSK-3 may perform key roles in the response to viral infection, replication and pathogenesis. The effects of activated or inactivated forms of GSK-3 on virus infection are still not yet clearly understood phenomenon. The comprehension of the molecular mechanisms underlying the regulation of GSK-3-associated signaling pathways in terms of different stages of virus replication could be important not only to understand the pathogenesis of virus, but also possibly leading to new therapeutic targets. This review will focus on recent advances in understanding the roles of GSK-3 on viral replication, pathogenesis and the immune responses.
Collapse
|
9
|
Song F, Xu G, Gaul MD, Zhao B, Lu T, Zhang R, DesJarlais RL, DiLoreto K, Huebert N, Shook B, Rentzeperis D, Santulli R, Eckardt A, Demarest K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg Med Chem Lett 2019; 29:1974-1980. [DOI: 10.1016/j.bmcl.2019.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
|
10
|
Shu S, Dai A, Wang J, Wang B, Feng Y, Li J, Cai X, Yang D, Ma D, Wang MW, Liu H. A novel series of 4-methyl substituted pyrazole derivatives as potent glucagon receptor antagonists: Design, synthesis and evaluation of biological activities. Bioorg Med Chem 2018. [PMID: 29523469 DOI: 10.1016/j.bmc.2018.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50 = 0.09 μM, 0.06 μM, 0.07 μM and 0.08 μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50 = 0.22 μM, 0.26 μM, 0.44 μM and 0.46 μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.
Collapse
Affiliation(s)
- Shuangjie Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yang Feng
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dakota Ma
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Górska A, Kliś T, Serwatowski J. Regioselective lithiation of 1‐benzylpyrazole derivatives: Synthesis of amides derived from pyrazole. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Agnieszka Górska
- Faculty of Food SciencesWarsaw University of Life Sciences Nowoursynowska 166 02‐776 Warsaw Poland
| | - Tomasz Kliś
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00‐664 Warsaw Poland
| | - Janusz Serwatowski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00‐664 Warsaw Poland
| |
Collapse
|
12
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
13
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
14
|
Maruoka H, Shirouzu E, Masumoto E, Okabe-Nakahara F, Yamagata K. One-Pot Three-Component Synthesis of Novel Pyrazole-2,3-pyrroledicarboxylic Acid 2,3-Diesters. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Kumar R, Singh P, Parsons S, Tewari AK. Experimental and Theoretical Study for the Assessment of the Conformational Analysis of Pyrazolone Derivatives: Employing Quantitative Analysis for Intermolecular Interactions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ranjeet Kumar
- Department of Chemistry (Center of Advanced Studies); Institute of Science, Banaras Hindu University; Varanasi 221005 India
| | - Praveen Singh
- Department of Chemistry (Center of Advanced Studies); Institute of Science, Banaras Hindu University; Varanasi 221005 India
| | - Simon Parsons
- School of Chemistry and Centre for Science at Extreme Conditions; The University of Edinburgh, King's Buildings; West Mains Road Edinburgh EH9 3JJ Scotland, UK
| | - Ashish K. Tewari
- Department of Chemistry (Center of Advanced Studies); Institute of Science, Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
16
|
Suram D, Thatha S, Venkatapuram P, Adivireddy P. Synthesis and Antimicrobial Activity of a New Class of Benzazolyl Pyrazoles. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Durgamma Suram
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Sreenivasulu Thatha
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Padmaja Adivireddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|
17
|
Tabassum S, Govindaraju S, Pasha MA. FeSO4
⋅7H2
O Catalyzed Rapid and Efficient One-Pot Multicomponent Synthesis of Functionalized Pyrazol-yl-pyrazolone Methanes. ChemistrySelect 2017. [DOI: 10.1002/slct.201700602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sumaiya Tabassum
- Department of Studies in Chemistry; Central College Campus; Bangalore University; Palace Road Bengaluru- 560 001 India
| | - Santhosh Govindaraju
- Department of Studies in Chemistry; Central College Campus; Bangalore University; Palace Road Bengaluru- 560 001 India
| | - Mohamed Afzal Pasha
- Department of Studies in Chemistry; Central College Campus; Bangalore University; Palace Road Bengaluru- 560 001 India
| |
Collapse
|
18
|
Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as anti-mycobacterial agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1821-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Ashok D, Rangu K, Gundu S, Rao VH. Synthesis of pyrazolylfuro[2,3-f]chromenes and evaluation of their antimicrobial activity. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-1987-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
21
|
Shu S, Cai X, Li J, Feng Y, Dai A, Wang J, Yang D, Wang MW, Liu H. Design, synthesis, structure–activity relationships, and docking studies of pyrazole-containing derivatives as a novel series of potent glucagon receptor antagonists. Bioorg Med Chem 2016; 24:2852-63. [DOI: 10.1016/j.bmc.2016.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
|
22
|
Mohamed SK, Younes SHH, Abdel-Raheem EMM, Horton PN, Akkurt M, Glidewell C. Triclinic and monoclinic polymorphs of meso-(E,E)-1,1'-[1,2-bis(4-chlorophenyl)ethane-1,2-diyl]bis(phenyldiazene): the high-yield synthesis of an unexpected product, concomitant polymorphism and configurational disorder. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:57-62. [PMID: 26742828 DOI: 10.1107/s2053229615023578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022]
Abstract
Pyrazolidine-3,5-diones and their derivatives exhibit a wide range of biological activities. Seeking to explore the effect of combining a hydrocarbyl ring substituent, as present in sulfinpyrazone (used to treat gout), with a chlorinated aryl ring, as present in muzolimine (a diuretic), we explored the reaction between 1-phenylpyrazolidine-3,5-dione and 4-chlorobenzaldehyde under mildly basic conditions in the expectation of producing the simple condensation product 4-(4-chlorobenzylidene)-1-phenylpyrazolidine-3,5-dione. However, the reaction product proved to be meso-(E,E)-1,1'-[1,2-bis(4-chlorophenyl)ethane-1,2-diyl]bis(phenyldiazene), C26H20Cl2N4, and a tentative mechanism is proposed. Crystallization from ethanol produces two concomitant polymorphs, i.e. a triclinic form, (I), in the space group P-1, and a monoclinic form, (II), in the space group C2/c. In both polymorphs, the molecules lie across centres of inversion, but in (II), the molecules are subject to whole-molecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of polymorph (I), but the molecules of polymorph (II) are linked by C-H...π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C-H...N interactions.
Collapse
Affiliation(s)
- Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England
| | - Sabry H H Younes
- Chemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | | | - Peter N Horton
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | | |
Collapse
|
23
|
Jotani MM, Gajera NN, Patel MC, Sung HHY, Tiekink ERT. A monoclinic polymorph of 4-(2H-1,3-benzodioxol-5-yl)-1-(4-methyl-phen-yl)-1H-pyrazol-5-amine. Acta Crystallogr E Crystallogr Commun 2015; 71:1121-4. [PMID: 26594387 PMCID: PMC4647416 DOI: 10.1107/s2056989015016023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022]
Abstract
The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z' = 1) of the previously reported triclinic (P-1 with Z' = 2) form [Gajera et al. (2013 ▸). Acta Cryst. E69, o736-o737]. The mol-ecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the mol-ecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methyl-ene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent mol-ecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, mol-ecules assemble into supra-molecular helical chains via amino-pyrazolyl N-H⋯N hydrogen bonds. These are linked into layers via C-H⋯π inter-actions, and layers stack along the a axis with no specific inter-actions between them.
Collapse
Affiliation(s)
- Mukesh M. Jotani
- Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India
| | - Nilesh N. Gajera
- P. S. Science and H. D. Patel Arts College, S. V. Campus, Kadi, Gujarat 382 715, India
| | - Mukesh C. Patel
- P. S. Science and H. D. Patel Arts College, S. V. Campus, Kadi, Gujarat 382 715, India
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Edward R. T. Tiekink
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Chemical Crystallography and Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Sangepu B, Gandu B, Anupoju G, Jetti V. Synthesis of Isoxazole, 1, 2, 4-Oxadiazole and (1H-Pyrazol-4-yl)-methanone Oxime Derivatives fromN-Hydroxy-1H-pyrazole-4-carbimidoyl Chloride and their Biological Activity. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bhavanarushi Sangepu
- Fluoroorganic Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Bharath Gandu
- Bioengineering and Environmental Sciences; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Gangagnirao Anupoju
- Bioengineering and Environmental Sciences; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Vatsalarani Jetti
- Fluoroorganic Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| |
Collapse
|
25
|
Synthesis, characterization and quantum-chemical calculations of novel series of pyridones, quinazolinones and pyrazoles heterocyclic compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0644-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Lotfy M, Kalasz H, Szalai G, Singh J, Adeghate E. Recent Progress in the Use of Glucagon and Glucagon Receptor Antago-nists in the Treatment of Diabetes Mellitus. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2014; 8:28-35. [PMID: 25674162 PMCID: PMC4321206 DOI: 10.2174/1874104501408010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/25/2022]
Abstract
Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of
Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose
production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in
patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon
receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well
as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide
BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6-
(1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption,
dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the
role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus
by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout
techniques.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University; School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK; National Research Centre, Hormones Department, Cairo, Egypt
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Szalai
- ENT Department, St. Janos Hospital, Budapest, Hungary
| | - Jaipaul Singh
- School of Forensic and Investigative Sciences and School of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Ar-ab Emirates
| |
Collapse
|
27
|
Alegaon S, Hirpara M, Alagawadi K, Hullatti K, Kashniyal K. Synthesis of novel pyrazole–thiadiazole hybrid as potential potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 2014; 24:5324-9. [DOI: 10.1016/j.bmcl.2014.08.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023]
|
28
|
Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur J Med Chem 2013; 70:248-58. [DOI: 10.1016/j.ejmech.2013.10.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022]
|
29
|
|
30
|
Gajera NN, Patel MC, Jotani MM, Tiekink ERT. 4-(2H-1,3-Benzodioxol-5-yl)-1-(4-methyl-phenyl)-1H-pyrazol-5-amine. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o736-7. [PMID: 23723888 PMCID: PMC3648268 DOI: 10.1107/s1600536813009914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 11/11/2022]
Abstract
In the title compound, C17H15N3O2, two independent mol-ecules (A and B) comprise the asymmetric unit. The major conformational difference arises in the relative orientation of the pyrazole ring amine and dioxole substituents which are anti in A and syn in B. The five-membered dioxole ring in each mol-ecule has an envelope conformation with the methyl-ene C atom as the flap. The mean plane through the benzodioxole and benzene groups make dihedral angles of 31.67 (8) and 68.22 (9)°, respectively, with the pyrazole ring in A; the equivalent values for B are 47.18 (7) and 49.08 (9)°. In the crystal, supra-molecular zigzag chains along the b-axis direction arise as a result of N-H⋯N hydrogen bonding. These are consolidated into supra-molecular double chains via C-H⋯O and C-H⋯π inter-actions.
Collapse
Affiliation(s)
- Nilesh N Gajera
- P.S. Science and H.D. Patel Arts College, S.V. Campus, Kadi, Gujarat 382 715, India
| | | | | | | |
Collapse
|
31
|
Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, Li Z, Wu MS, Yang X, Dallas-Yang Q, Miller C, Xiong Y, Langdon RB, Parmee ER, Zhang BB. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One 2012. [PMID: 23185367 PMCID: PMC3501516 DOI: 10.1371/journal.pone.0049572] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.
Collapse
Affiliation(s)
- James Mu
- Discovery and Preclinical Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis 2012; 2012:381029. [PMID: 22888461 PMCID: PMC3408674 DOI: 10.1155/2012/381029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials.
Collapse
|
33
|
Xiong Y, Guo J, Candelore MR, Liang R, Miller C, Dallas-Yang Q, Jiang G, McCann PE, Qureshi SA, Tong X, Xu SS, Shang J, Vincent SH, Tota LM, Wright MJ, Yang X, Zhang BB, Tata JR, Parmee ER. Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J Med Chem 2012; 55:6137-48. [PMID: 22708876 DOI: 10.1021/jm300579z] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.7 nM). It is selective for glucagon receptor relative to other family B GPCRs, showing IC(50) values of 1020 nM for GIPR, 9200 nM for PAC1, and >10000 nM for GLP-1R, VPAC1, and VPAC2. Compound 9m blunted glucagon-induced glucose elevation in hGCGR mice and rhesus monkeys. It also lowered ambient glucose levels in both acute and chronic mouse models: in hGCGR ob/ob mice it reduced glucose (AUC 0-6 h) by 32% and 39% at 3 and 10 mpk single doses, respectively. In hGCGR mice on a high fat diet, compound 9m at 3, and 10 mpk po in feed lowered blood glucose levels by 89% and 94% at day 10, respectively, relative to the difference between the vehicle control and lean hGCGR mice. On the basis of its favorable biological and DMPK properties, compound 9m (MK-0893) was selected for further preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Yusheng Xiong
- Discovery and Preclinical Sciences, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Borkin DA, Puscau M, Carlson A, Solan A, Wheeler KA, Török B, Dembinski R. Synthesis of diversely 1,3,5-trisubstituted pyrazoles via 5-exo-dig cyclization. Org Biomol Chem 2012; 10:4505-8. [PMID: 22575899 DOI: 10.1039/c2ob25580d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Exo-dig cyclocondensation of alk-3-yn-1-ones with hydrazines, in the presence of montmorillonite K-10, provides an effective method with a high atom economy for the synthesis of diversely 1,3,5-trisubstituted pyrazoles. The microwave-accelerated reaction proceeds in the absence of solvent and leads to 5-benzyl substituted pyrazoles with good yields (72-91%). The regiochemistry of the process was confirmed by the X-ray crystallographic structure determination of 1-(2-fluorophenyl)-5-(4-methylbenzyl)-3-phenyl-1H-pyrazole.
Collapse
Affiliation(s)
- Dmitry A Borkin
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev 2012; 64:188-237. [DOI: 10.1124/pr.110.003319] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Shen DM, Lin S, Parmee ER. A survey of small molecule glucagon receptor antagonists from recent patents (2006 – 2010). Expert Opin Ther Pat 2011; 21:1211-40. [DOI: 10.1517/13543776.2011.587001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|