1
|
Xu Q, Huang KS, Wang YF, Wang HH, Cui BD, Han WY, Chen YZ, Wan NW. Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Kai-Shun Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Fei Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
Šlachtová V, Chasák J, Brulíková L. Synthesis of Various 2-Aminobenzoxazoles: The Study of Cyclization and Smiles Rearrangement. ACS OMEGA 2019; 4:19314-19323. [PMID: 31763555 PMCID: PMC6868899 DOI: 10.1021/acsomega.9b02702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This study reports two synthetic approaches leading to 2-aminobenzoxazoles and their N-substituted analogues. Our first synthetic strategy involves a reaction between various o-aminophenols and N-cyano-N-phenyl-p-toluenesulfonamide as a nonhazardous electrophilic cyanating agent in the presence of Lewis acid. The second synthetic approach uses the Smiles rearrangement upon activation of benzoxazole-2-thiol with chloroacetyl chloride. Both developed synthetic protocols are widely applicable, afford the desired aminobenzoxazoles in good to excellent yields, and use nontoxic and inexpensive starting material.
Collapse
|
3
|
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019; 25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | | | - Giovanni Lentini
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
4
|
Abstract
The development of benzoxazole containing drugs and research compounds has been discussed in the present review along with its varied pharmacological activities such as antimicrobial, antiinflammatory, anticancer, antiviral, antiasthmatic, antitubercular, anticonvulsant, lipid modulating, anticoagulants, antidiabetic and anthelmintic activities. The present review is a compilation of the biological activities determined in the research work conducted on benzoxazole-based compounds fused and linked with various other heterocycles.
Collapse
Affiliation(s)
- Mayura Kale
- Government College of Pharmacy, Osmanpura, Aurangabad-431005, Maharashtra, India
| | | |
Collapse
|
5
|
Singh S, Veeraswamy G, Bhattarai D, Goo JI, Lee K, Choi Y. Recent Advances in the Development of Pharmacologically Active Compounds that Contain a Benzoxazole Scaffold. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500235] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Gajulapati Veeraswamy
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| | - Deepak Bhattarai
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Ja-Il Goo
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| | - Kyeong Lee
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Yongseok Choi
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| |
Collapse
|
6
|
Wang W, He Y, Xu P, You Q, Xiao H, Xiang H. Synthesis and biological evaluation of isoflavone amide derivatives with antihyperlipidemic and preadipocyte antiproliferative activities. Bioorg Med Chem 2015; 23:4428-4433. [PMID: 26145818 DOI: 10.1016/j.bmc.2015.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
A series of isoflavone amides were designed with isoflavone in place of the scaffold of 2-arylbenzoxazole as cholesterol ester transfer protein (CETP) inhibitors. Twelve new compounds were synthesized, and their inhibitory activities of CETP and preadipocyte proliferation were assayed. The hypolipidemic potency of the most effective compound HY-2c was further tested in vivo by hamster. The results indicate that HY-2c exhibited favorable antihyperlipidemic and preadipocyte antiproliferative activities.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yi He
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Pei Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, PR China.
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 2014; 13:105-21. [DOI: 10.1038/nrd4163] [Citation(s) in RCA: 706] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Louvel J, Carvalho JFS, Yu Z, Soethoudt M, Lenselink EB, Klaasse E, Brussee J, Ijzerman AP. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: a case of clofilium analogues. J Med Chem 2013; 56:9427-40. [PMID: 24224763 DOI: 10.1021/jm4010434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel. Efforts were especially focused on studying the influence of the structural rigidity and the nature of the linkers composing the clofilium scaffold. It was shown that introducing triple bonds and oxygen atoms in the n-butyl linker of the molecule greatly reduced affinity without significantly modifying the pKa of the essential basic nitrogen. These findings could prove useful in the first stages of drug discovery as a systematic way of reducing the risk of hERG K(+) channel blockade-induced cardiotoxicity.
Collapse
Affiliation(s)
- Julien Louvel
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mantlo NB, Escribano A. Update on the Discovery and Development of Cholesteryl Ester Transfer Protein Inhibitors for Reducing Residual Cardiovascular Risk. J Med Chem 2013; 57:1-17. [DOI: 10.1021/jm400574e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan B. Mantlo
- Lilly
Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, United States
| | - Ana Escribano
- Centro
de Investigación
Lilly, Avda. de la Industria 30, 28108-Alcobendas, Madrid, Spain
| |
Collapse
|
10
|
Zhang Q, Deng C, Fang L, Xu W, Zhao Q, Zhang J, Wang Y, Lei X. Synthesis and Evaluation of the Analogues of Penicillide against Cholesterol Ester Transfer Protein. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201200977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|