1
|
Ali IH, Hassan RM, El Kerdawy AM, Abo-Elfadl MT, Abdallah HMI, Sciandra F, Ghannam IAY. Novel thiazolidin-4-one benzenesulfonamide hybrids as PPARγ agonists: Design, synthesis and in vivo anti-diabetic evaluation. Eur J Med Chem 2024; 269:116279. [PMID: 38460271 DOI: 10.1016/j.ejmech.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARɣ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARɣ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARɣ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARɣ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARɣ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARɣ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARɣ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARɣ binding site.
Collapse
Affiliation(s)
- Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR) Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
2
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
3
|
Palchykov V, Manko N, Finiuk N, Stoika R, Obushak M, Pokhodylo N. Antimicrobial action of arylsulfonamides bearing (aza)norbornane and related motifs: evaluation of new promising anti-MRSA agents. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Tkachenko IV, Tarabara IN, Omelchenko IV, Palchykov VA. Grignard Reagents and Their N
-analogues in the Synthesis of Tricyclic and Tetracyclic Cage-like Lactams. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Irina V. Omelchenko
- State Scientific Institution “Institute for Single Crystals”; National Academy of Sciences of Ukraine; Kharkiv 61001 Ukraine
| | | |
Collapse
|
5
|
Zhou B, Hong KH, Ji M, Cai J. Design, synthesis, and biological evaluation of structurally constrained hybrid analogues containing ropinirole moiety as a novel class of potent and selective dopamine D3 receptor ligands. Chem Biol Drug Des 2018; 92:1597-1609. [PMID: 29710404 DOI: 10.1111/cbdd.13324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 01/05/2023]
Abstract
Two series of hybrid analogues were designed, synthesized, and evaluated as a novel class of selective ligands for the dopamine D3 receptor. Binding affinities of target compounds were determined (using the method of radioligand binding assay). Compared to comparator agent BP897, compounds 2a and 2c were found to demonstrate a considerable binding affinity and selectivity for D3 receptor, and especially compound 2h was similarly potent and more selective D3R ligand than BP897, a positive reference. Thus, they may provide valuable information for the discovery and development of highly potent dopamine D3 receptor ligands with outstanding selectivity.
Collapse
Affiliation(s)
- Benhua Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China.,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and the Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China.,Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
6
|
Conroy T, Manohar M, Gong Y, Wilkinson SM, Webster M, Lieberman BP, Banister SD, Reekie TA, Mach RH, Rendina LM, Kassiou M. A systematic exploration of the effects of flexibility and basicity on sigma (σ) receptor binding in a series of substituted diamines. Org Biomol Chem 2016; 14:9388-9405. [PMID: 27714195 DOI: 10.1039/c6ob00615a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sigma-1 receptor (S1R) has attracted a great deal of attention as a prospective drug target due to its involvement in numerous neurological disorders and, more recently, for its therapeutic potential in neuropathic pain. As there was no crystal structure of this membrane-bound protein reported until 2016, ligand generation was driven by pharmacophore refinements to the general model suggested by Glennon and co-workers. The generalised S1R pharmacophore comprises a central region where a basic amino group is preferred, flanked by two hydrophobic groups. Guided by this pharmacophore, S1R ligands containing piperazines, piperazinones, and ethylenediamines have been developed. In the current work, we systematically deconstructed the piperazine core of a prototypic piperazine S1R ligand (vide infra) developed in our laboratories. Although we did not improve the affinity at the S1R compared to the lead, we identified several features important for affinity and selectivity. These included at least one basic nitrogen atom, conformational flexibility and, for S1R, a secondary or tertiary amine group proximal to the anisole. Furthermore, S2R selectivity can be tailored with functional group modifications of the N-atom proximal to the anisole.
Collapse
Affiliation(s)
- Trent Conroy
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Madhura Manohar
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Yu Gong
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Shane M Wilkinson
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Michael Webster
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Brian P Lieberman
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samuel D Banister
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305, USA
| | - Tristan A Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Synthesis and crystal structure of 1,3-dihydro-4-(2-hydroxyethyl)-2H-indol-2-one. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-013-1368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Banister SD, Manoli M, Barron ML, Werry EL, Kassiou M. N-substituted 8-aminopentacyclo[5.4.0.02,6.03,10.05,9]undecanes as σ receptor ligands with potential neuroprotective effects. Bioorg Med Chem 2013; 21:6038-52. [DOI: 10.1016/j.bmc.2013.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022]
|
9
|
Banister SD, Manoli M, Doddareddy MR, Hibbs DE, Kassiou M. A σ(1) receptor pharmacophore derived from a series of N-substituted 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecan-3-ols (AHDs). Bioorg Med Chem Lett 2012; 22:6053-8. [PMID: 22959245 DOI: 10.1016/j.bmcl.2012.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 11/20/2022]
Abstract
A library of N-substituted 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecan-3-ols (AHDs) was synthesized and subjected to competition binding assays at σ(1) and σ(2) receptors, as well as off-target screening of representative members at 44 other common central nervous system (CNS) receptors, transporters, and ion channels. Excluding 3 low affinity analogs, 31 ligands demonstrated nanomolar K(i) values for either σ receptor subtype. Several selective σ(1) and σ(2) ligands were discovered, with selectivities of up to 29.6 times for σ(1) and 52.4 times for σ(2), as well as several high affinity, subtype non-selective ligands. The diversity of structures and σ(1) affinities of the ligands allowed the generation of a σ(1) receptor pharmacophore that will enable the rational design of increasingly selective and potent σ(1) ligands for probing σ(1) receptor function.
Collapse
Affiliation(s)
- Samuel D Banister
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
10
|
Banister SD, Rendina LM, Kassiou M. 7-Azabicyclo[2.2.1]heptane as a scaffold for the development of selective sigma-2 (σ2) receptor ligands. Bioorg Med Chem Lett 2012; 22:4059-63. [DOI: 10.1016/j.bmcl.2012.04.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 02/07/2023]
|
11
|
Joubert J, Geldenhuys WJ, Van der Schyf CJ, Oliver DW, Kruger HG, Govender T, Malan SF. Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem 2012; 7:375-84. [PMID: 22307951 DOI: 10.1002/cmdc.201100559] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 11/12/2022]
Abstract
Polycyclic cage scaffolds have been successfully used in the development of numerous lead compounds demonstrating activity in the central nervous system (CNS). Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, and stroke, as well as drug abuse, can be modulated with polycyclic cage derivatives. These cage moieties, including adamantane and pentacycloundecane derivatives, improve the pharmacokinetic and pharmacodynamic properties of conjugated parent drugs and serve as an important scaffold in the design of therapeutically active agents for the treatment of neurological disorders. In this Minireview, we focus on the recent developments in the field of polycyclic cage compounds, as well as the relationship between the lipophilic character of these cage-derived drugs and the ability of such compounds to target and reach the CNS and improve the pharmacodynamic properties of compounds conjugated to it.
Collapse
Affiliation(s)
- Jacques Joubert
- School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | | | | | | | | | | | | |
Collapse
|
12
|
Banister SD, Yoo DT, Chua SW, Cui J, Mach RH, Kassiou M. N-Arylalkyl-2-azaadamantanes as cage-expanded polycarbocyclic sigma (σ) receptor ligands. Bioorg Med Chem Lett 2011; 21:5289-92. [PMID: 21788137 DOI: 10.1016/j.bmcl.2011.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/15/2022]
Abstract
A series of racemic N-arylalkyl-2-azaadamantan-1-ols (9-15) and the corresponding deoxygenated, achiral N-arylalkyl-2-azaadamantanes (23-29) were synthesized and screened in competition binding assays against a panel of CNS targets. Adamantyl hemiaminals 9-15 displayed generally low affinity for both σ(1) (K(i) values= 294-1950 nM) and σ(2) receptors (K(i) values=201-1020 nM), and negligible affinity for 42 other CNS proteins. Deoxygenation of 9-15 to give the corresponding achiral azaadamantanes 23-29 greatly improved affinity for σ(1) (K(i) values=8.3-239 nM) and σ(2) receptors (K(i) values=34-312 nM).
Collapse
Affiliation(s)
- Samuel D Banister
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|