1
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
2
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Cirano FR, Pimentel SP, Casati MZ, Corrêa MG, Pino DS, Messora MR, Silva PHF, Ribeiro FV. Effect of curcumin on bone tissue in the diabetic rat: repair of peri-implant and critical-sized defects. Int J Oral Maxillofac Surg 2018; 47:1495-1503. [PMID: 29857981 DOI: 10.1016/j.ijom.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
This study determined the effect of curcumin on bone healing in animals with diabetes mellitus (DM). One hundred rats were divided into five groups: DM+PLAC, DM+CURC, DM+INS, DM+CURC+INS, and non-DM (CURC, curcumin; PLAC, placebo; INS, insulin). Critical calvarial defects were created and titanium implants were inserted into the tibiae. Calvarial defects were analyzed histometrically, and BMP-2, OPN, OPG, RANKL, Runx2, Osx, β-catenin, Lrp-5, and Dkk1 mRNA levels were quantified by PCR. The implants were removed for a torque evaluation, the peri-implant tissue was collected for mRNA quantification of the same bone-related markers, and the tibiae were submitted to micro-computed tomography. The DM+CURC+INS and non-DM groups exhibited greater closure of the calvaria when compared to the DM+PLAC group (P<0.05). Increased retention of implants was observed in the DM+CURC, DM+CURC+INS, and non-DM groups when compared to the DM+PLAC group (P<0.05). CURC improved bone volume and increased bone-implant contact when compared to DM+PLAC (P<0.05). In calvarial samples, CURC favourably modulated RANKL/OPG and Dkk1 and improved β-catenin levels when compared to DM+PLAC (P<0.05). In peri-implant samples, Dkk1 and RANKL/OPG were down-regulated and BMP-2 up-regulated by CURC when compared to DM+PLAC (P<0.05). CURC reverses the harmful effects of DM in bone healing, contributing to the modulation of bone-related markers.
Collapse
Affiliation(s)
- F R Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - S P Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - M Z Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - M G Corrêa
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - D S Pino
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - M R Messora
- Department of Surgery and Bucco-Maxillofacial Traumatology and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P H F Silva
- Department of Surgery and Bucco-Maxillofacial Traumatology and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F V Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Diethylamino-curcumin mimic with trizolyl benzene enhances TRAIL-mediated cell death on human glioblastoma cells. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Xin M, Yang Y, Zhang D, Wang J, Chen S, Zhou D. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression. Osteoporos Int 2015; 26:2665-76. [PMID: 25963235 DOI: 10.1007/s00198-015-3153-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Treatment with curcumin attenuated modeled microgravity-induced bone loss, possibly through abating oxidative stress and activating vitamin D receptor. Curcumin might be an effective countermeasure for microgravity-induced bone loss but remains to be tested in humans. INTRODUCTION Bone loss is one of the most important complications for human crewmembers who are exposed to long-term microgravity in space and also for bedridden people. The aim of the current study was to elucidate whether treatment with curcumin attenuated bone loss induced by microgravity. METHODS We used hind-limb suspension (HLS) and rotary wall vessel bioreactor (RWVB) to model microgravity in vivo and in vitro, respectively. We investigated the effects of curcumin consumption (40 mg kg(-1) body weight day(-1), via daily oral gavages) on Sprague-Dawley (SD) rats exposed to HLS for 6 weeks. Then, we investigated the effects of incubation with curcumin (4 μM) on MC3T3-E1 and RAW264.7 cells cultured in RWVB. RESULTS Curcumin alleviated HLS-induced reduction of bone mineral density in tibiae and preserved bone structure in tibiae and mechanical strength in femurs. Curcumin alleviated HLS-induced oxidative stress marked by reduced malondialdehyde content and increased total sulfhydryl content in femurs. In cultured MC3T3-E1 cells, curcumin inhibited modeled microgravity-induced reactive oxygen species (ROS) formation and enhanced osteoblastic differentiation. In cultured RAW264.7 cells, curcumin reduced modeled microgravity-induced ROS formation and attenuated osteoclastogenesis. In addition, curcumin upregulated vitamin D receptor (VDR) expression in femurs of rats exposed to HLS and MC3T3-E1 cells exposed to modeled microgravity. CONCLUSION Curcumin alleviated HLS-induced bone loss in rats, possibly via suppressing oxidative stress and upregulating VDR expression.
Collapse
Affiliation(s)
- M Xin
- Department of Orthopaedics, Provincial Hospital Affiliated to Shandong University, 324 JingWu Road, 250021, Jinan, China
| | - Y Yang
- Department of Orthopaedics, Provincial Hospital Affiliated to Shandong University, 324 JingWu Road, 250021, Jinan, China
| | - D Zhang
- Department of Anaesthesiology, The Second Hospital Affiliated to Shandong University, 250033, Jinan, China
| | - J Wang
- The Medical School, The Australian National University, Acton, ACT 0200, Australia
| | - S Chen
- Research School of Physics and Engineering, The Australian National University, Acton, ACT 0200, Australia
| | - D Zhou
- Department of Orthopaedics, Provincial Hospital Affiliated to Shandong University, 324 JingWu Road, 250021, Jinan, China.
| |
Collapse
|
6
|
Park CB, Ahn CM, Oh S, Kwon D, Cho WC, Shin WS, Cui Y, Um YS, Park BG, Lee S. Synthesis of alkylsulfonyl and substituted benzenesulfonyl curcumin mimics as dual antagonist of L-type Ca(2+) channel and endothelin A/B2 receptor. Bioorg Med Chem 2015; 23:6673-82. [PMID: 26386817 DOI: 10.1016/j.bmc.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/01/2022]
Abstract
We synthesized a library of curcumin mimics with diverse alkylsulfonyl and substituted benzenesulfonyl modifications through a simple addition reaction of important intermediate, 1-(3-Amino-phenyl)-3-(4-hydroxy-3-methoxy-phenyl)-propenone (10), with various sulfonyl chloride reactants and then tested their vasodilatation effect on depolarization (50 mM K(+))- and endothelin-1 (ET-1)-induced basilar artery contraction. Generally, curcumin mimics with aromatic sulfonyl groups showed stronger vasodilation effect than alkyl sulfonylated curcumin mimics. Among the tested compounds, six curcumin mimics (11g, 11h, 11i, 11j, 11l, and 11s) in a depolarization-induced vasoconstriction and seven compounds (11g, 11h, 11i, 11j, 11l, 11p, and 11s) in an ET-1-induced vasoconstriction showed strong vasodilation effect. Based on their biological properties, synthetic curcumin mimics can act as dual antagonist scaffold of L-type Ca(2+) channel and endothelin A/B2 receptor in vascular smooth muscle cells. In particular, compounds 11g and 11s are promising novel drug candidates to treat hypertension related to the overexpression of L-type Ca(2+) channels and ET peptides/receptors-mediated cardiovascular diseases.
Collapse
Affiliation(s)
- Chong-Bin Park
- Department of Thoracic and Cardiovascular Surgery, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung 210-711, Republic of Korea
| | - Chan Mug Ahn
- Department of Basic Science, Yonsei University Wonju College of Medicine, Wonju 220-701, Republic of Korea
| | - Sangtae Oh
- Department of Basic Science, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Daeho Kwon
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Won-Chul Cho
- Department of Thoracic and Cardiovascular Surgery, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung 210-711, Republic of Korea
| | - Woon-Seob Shin
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Yuan Cui
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Ye Sol Um
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Byong-Gon Park
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea.
| | - Seokjoon Lee
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea.
| |
Collapse
|
7
|
Yang X, He B, Liu P, Yan L, Yang M, Li D. Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats. Eur J Pharmacol 2015; 765:209-16. [PMID: 26300394 DOI: 10.1016/j.ejphar.2015.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
This work aimed to investigate the therapeutic effect of curcumin on sublesional bone loss induced by spinal cord injury (SCI) in rats. SCI model in this work was generated in rats by surgical transaction of the cord at the T10-12 level. After the surgery, animals were treated with curcumin (110 mg/kg body mass/day, via oral gavages) for 2 weeks. Treatment of SCI rats with curcumin prevented the reduction of bone mass in tibiae and femurs, preserved bone microstructure including trabecular bone volume fraction, trabecular number, and trabecular thickness in proximal tibiae, and preserved mechanical properties of femoral midshaft. Treatment of SCI rats with curcumin increased osteoblast surface and reduced osteoclast surface in proximal tibiae. Treatment of SCI rats with curcumin increased osteocalcin mRNA expression and reduced mRNA levels of tartrate-resistant acid phosphatase and mRNA ratio of receptor activator of NF-κB ligand/osteoprotegerin in distal femurs. Treatment of SCI rats with curcumin reduced serum and femoral levels of thiobarbituric acid reactive substances. Treatment of SCI rats with curcumin had no significant effect on serum 25(OH)D, but enhanced mRNA and protein expression of vitamin D receptor (VDR) in distal femurs. Treatment of SCI rats with curcumin enhanced mRNA levels of Wnt3a, Lrp5, and ctnnb1 and upregulated protein expression of β-catenin in distal femurs. In conclusions, treatment with curcumin abated oxidative stress, activated VDR, and enhanced Wnt/β-catenin pathway, which might explain its beneficial effect against sublesional bone loss following SCI in rats, at least in part.
Collapse
Affiliation(s)
- Xiaobin Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Peng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ming Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dichen Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xianning Western Road 28, Xi'an 710049, Shaanxi, China
| |
Collapse
|
8
|
Kwon D, Oh S, Park JH, Lee S, Lee S. The TRAIL Sensitization Effect of Substituted Triazolyl Curcumin Mimics Against Brain Cancer Cells. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Synthesis of diethylamino-curcumin mimics with substituted triazolyl groups and their sensitization effect of TRAIL against brain cancer cells. Bioorg Med Chem Lett 2014; 24:3346-50. [DOI: 10.1016/j.bmcl.2014.05.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022]
|
10
|
Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 2014; 5:120. [PMID: 24959146 PMCID: PMC4050335 DOI: 10.3389/fphar.2014.00120] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Chemistry, University of Catania Catania, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Guido Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Rosalia Crupi
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Angela Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Francesca Lodato
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Maria Scuto
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Angela T Salinaro
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy ; University of Manchester Manchester, UK
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts Amherst, MA, USA
| | | |
Collapse
|
11
|
Bairwa K, Grover J, Kania M, Jachak SM. Recent developments in chemistry and biology of curcumin analogues. RSC Adv 2014. [DOI: 10.1039/c4ra00227j] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Cho DC, Jung HS, Kim KT, Jeon Y, Sung JK, Hwang JH. Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat. J Korean Neurosurg Soc 2013; 54:461-6. [PMID: 24527187 PMCID: PMC3921272 DOI: 10.3340/jkns.2013.54.6.461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/17/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022] Open
Abstract
Objective Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats. Methods Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. Results High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015). Conclusion The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.
Collapse
Affiliation(s)
- Dae-Chul Cho
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Sik Jung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Eom YW, Woo HB, Ahn CM, Lee S. Synthesis of Curcumin Mimics Library with α,β-Unsaturated Carbonyl Aromatic Group and their Inhibitory Effect against Adipocyte Differentiation of 3T3-L1. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Eom YW, Oh S, Woo HB, Ham J, Ahn CM, Lee S. Cytotoxicity of Substituted Benzimidazolyl Curcumin Mimics Against Multi-Drug Resistance Cancer Cell. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
|
16
|
Cho DC, Kim KT, Jeon Y, Sung JK. A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat. Acta Neurochir (Wien) 2012; 154:2215-23. [PMID: 23053289 DOI: 10.1007/s00701-012-1516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the therapeutic effects of combination therapy with curcumin and alendronate on bone remodeling after ovariectomy in rats. METHODS Eighty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed amongst four groups: untreated OVX group, curcumin-administered group, alendronate-administered group, and the combination therapy group. At 8 and 12 weeks after surgery, rats from each of the groups were euthanized. Serum biochemical markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX) were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. RESULTS Serum biochemical markers of bone turnover in the experiment groups (curcumin administered group, alendronate administered group, and the combination therapy group) were significantly lower than in the untreated OVX group (p < 0.05). The combination therapy group had lower ALP and CTX-1 concentrations at 12 weeks, which were statistically significant compared with the curcumin only and the alendronate only group (p < 0.05). The combination therapy group had a significant increase in BMD at 8 weeks and Cr.BMD at 12 weeks compared with the curcumin-only group (p = 0.005 and p = 0.013, respectively). The three point bending test showed that the 4th lumbar vertebrae of the combination therapy group had a significantly greater maximal load value compared to that of the curcumin only and the alendronate only group (p < 0.05). CONCLUSIONS The present study demonstrated that combination therapy with a high dose of curcumin and a standard dose of alendronate has therapeutic advantages over curcumin or alendronate monotherapy, in terms of the synergistic antiresorptive effect on bone remodeling, and improving bone mechanical strength.
Collapse
|
17
|
Woo HB, Eom YW, Park KS, Ham J, Ahn CM, Lee S. Synthesis of substituted benzimidazolyl curcumin mimics and their anticancer activity. Bioorg Med Chem Lett 2012; 22:933-6. [DOI: 10.1016/j.bmcl.2011.12.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/17/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
18
|
Jantan I, Bukhari SNA, Lajis NH, Abas F, Wai LK, Jasamai M. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. ACTA ACUST UNITED AC 2011; 64:404-12. [PMID: 22309272 DOI: 10.1111/j.2042-7158.2011.01423.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES A series of 43 curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on the chemiluminescence and chemotactic activity of phagocytes in vitro. METHODS The effects of the compounds on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) were evaluated using a luminol-based chemiluminescence assay and their effect on chemotactic migration of PMNs was investigated using the Boyden chamber technique. KEY FINDINGS Compounds 6, 17, 25 and 30 exhibited significant inhibitory activity on the oxidative burst of PMNs. The presence of methoxy groups at positions 2 and 5, and methoxylation and fluorination at positions 4 and 2 of both phenyl rings, respectively, may contribute significantly to their reactive oxygen species inhibition activity. Compounds 7, 17, 18, 24 and 32 showed strong inhibition of the chemotaxis migration of PMNs. Chlorination at various positions of both phenyl rings of cyclohexanone diarylpentanoid resulted in compounds with potent inhibitory effects on PMN migration. CONCLUSIONS The results suggest that some of these diarylpentanoid analogues are able to modulate the innate immune response of phagocytes at different steps, emphasizing their potential as a source of new immunomodulatory agents.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|