1
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Pulya S, Himaja A, Paul M, Adhikari N, Banerjee S, Routholla G, Biswas S, Jha T, Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J Med Chem 2023; 66:12033-12058. [PMID: 37660352 DOI: 10.1021/acs.jmedchem.3c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel pyrazino-hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound 4i exhibited potent HDAC3 inhibition (IC50 = 14 nM) with at least 121-fold selectivity. It demonstrated strong cytotoxicity against triple-negative breast cancer cells (IC50: 0.55 μM for 4T1, 0.74 μM for MDA-MB-231) with least normal cell toxicity. Metabolically stable 4i displayed a superior pharmacokinetic profile. A dose-dependent therapeutic efficacy of 4i was observed in a tumor-bearing mouse model. The biomarker analysis with tumor tissues displayed enhanced acetylation on Ac-H3K9, Ac-H3K27, and Ac-H4K12 compared to Ac-tubulin and Ac-SMC3 indicating HDAC3 selectivity of 4i in vivo. The immunoblotting study with tumor tissue showed upregulation of apoptotic proteins caspase-3, caspase-7, and cytochrome c and the downregulation of proliferation markers Bcl-2, CD44, EGFR, and Ki-67. Compound 4i represents a promising candidate for targeted breast cancer therapy, particularly for cases with triple-negative breast cancer.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
4
|
Shorokhov VV, Lebedev DS, Boichenko MA, Zhokhov SS, Trushkov IV, Ivanova OA. A simple method for the synthesis of isoindoline derivatives. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Melge AR, Parate S, Pavithran K, Koyakutty M, Mohan CG. Discovery of Anticancer Hybrid Molecules by Supervised Machine Learning Models and in Vitro Validation in Drug Resistant Chronic Myeloid Leukemia Cells. J Chem Inf Model 2022; 62:1126-1146. [PMID: 35172577 DOI: 10.1021/acs.jcim.1c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of hybrid drugs for targeting multiple aberrant pathways of cancer, by combining the key pharmacophores of clinically approved single-targeted drugs, has emerged as a promising approach for overcoming drug-resistance. Here, we report the design of unique hybrid molecules by combining the two pharmacophores of clinically approved BCR-ABL inhibitor (ponatinib) and HDAC inhibitor (vorinostat) and results of in vitro studies in drug-resistant CML cells. Robust 2D-QSAR and 3D-pharmacophore machine learning supervised models were developed for virtual screening of the hybrid molecules based on their predicted BCR-ABL and HDAC inhibitory activity. The developed 2D-QSAR model showed five information rich molecular descriptors while the 3D-pharmacophore model of BCR-ABL showed five different chemical features (hydrogen bond acceptor, donor, hydrophobic group, positive ion group, and aromatic rings) and the HDAC model showed four different chemical features (hydrogen bond acceptor, donor, positive ion group, and aromatic rings) for potent BCR-ABL and HDAC inhibition. Virtual screening of the 16 designed hybrid molecules identified FP7 and FP10 with better potential of inhibitory activity. FP7 was the most effective molecule with predicted IC50 using the BCR-ABL based 2D-QSAR model of 0.005 μM and that of the HDAC model of 0.153 μM, and that using the BCR-ABL based 3D-pharmacophore model was 0.02 μM and that with HDAC model was 0.014 μM. In vitro study (dose-response relationship) of FP7 in wild type and imatinib-resistant CML cell lines harboring Thr315Ile or Tyr253His mutations showed growth inhibitory IC50 values of 0.000 16, 0.0039, and 0.01 μM, respectively. This molecule also showed better biocompatibility when tested in whole blood and in PBMCs as compared to ponatinib or vorinostat.
Collapse
Affiliation(s)
- Anu R Melge
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Shraddha Parate
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Keechilat Pavithran
- Department of Oncology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - C Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| |
Collapse
|
6
|
Prasad B, Phanindrudu M, Nanubolu JB, Kamal A, Tiwari DK. Stereoselective synthesis of ( Z)-1,3-bis(α,β-unsaturated carbonyl)-isoindolines from aldehydes and phenacyl azides under metal free conditions. Chem Commun (Camb) 2021; 57:9542-9545. [PMID: 34546244 DOI: 10.1039/d1cc02884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here in the present manuscript, we report our observation of an unprecedented stereoselective synthesis of 2H-isoindolin-1,3-ylidenes from 2-(formylphenyl)acrylates and phenacylazide in the presence of piperidine. Unlike in our previous findings, in which we accessed 3-keto-isoquinolines from the same starting materials under slightly modified reaction conditions, this unexpected one-pot tandem reaction allows an efficient and simple method to access a variety of highly functionalized ethyl (Z)-2-((Z)-3-(2-oxo-2-arylethylidene)-2,3-dihydro-1H-benzo[e]isoindol-1-ylidene)-acetates in very good to excellent yields (up to 91%). The present methodology is compatible with a wide variety of functional groups.
Collapse
Affiliation(s)
- Budaganaboyina Prasad
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mandalaparthi Phanindrudu
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Jagadeesh Babu Nanubolu
- X-Ray crystallography Center CSIR-Indian Institute of Chemical Technology Uppal road, Tarnaka, Hyderabad 500607, India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110 062, New Delhi, India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research (CBMR), Raibareli Rad, Lucknow, U.P. 226014, India.
| |
Collapse
|
7
|
Divsalar DN, Simoben CV, Schonhofer C, Richard K, Sippl W, Ntie-Kang F, Tietjen I. Novel Histone Deacetylase Inhibitors and HIV-1 Latency-Reversing Agents Identified by Large-Scale Virtual Screening. Front Pharmacol 2020; 11:905. [PMID: 32625097 PMCID: PMC7311767 DOI: 10.3389/fphar.2020.00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Current antiretroviral therapies used for HIV management do not target latent viral reservoirs in humans. The experimental “shock-and-kill” therapeutic approach involves use of latency-reversal agents (LRAs) that reactivate HIV expression in reservoir-containing cells, followed by infected cell elimination through viral or host immune cytopathic effects. Several LRAs that function as histone deacetylase (HDAC) inhibitors are reported to reverse HIV latency in cells and in clinical trials; however, none to date have consistently reduced viral reservoirs in humans, prompting a need to identify new LRAs. Toward this goal, we describe here a virtual screening (VS) approach which uses 14 reported HDAC inhibitors to probe PubChem and identifies 60 LRA candidates. We then show that four screening “hits” including (S)-N-Hydroxy-4-(3-methyl-2-phenylbutanamido)benzamide (compound 15), N-(4-Aminophenyl)heptanamide (16), N-[4-(Heptanoylamino)phenyl]heptanamide (17), and 4-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)butanamide (18) inhibit HDAC activity and/or reverse HIV latency in vitro. This study demonstrates and supports that VS-based approaches can readily identify novel HDAC inhibitors and LRAs, which in turn may help toward inhibitor design and chemical optimization efforts for improved HIV shock-and-kill-based efforts.
Collapse
Affiliation(s)
- Donya Naz Divsalar
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Conrad Veranso Simoben
- Department of Chemistry, University of Buea, Buea, Cameroon.,Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Khumoekae Richard
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Wolfgang Sippl
- Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, University of Buea, Buea, Cameroon.,Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
8
|
Guan ZR, Wan Q, Ding MW. Diastereoselective synthesis of multisubstituted isoindolines via Sequential Ugi and aza-Michael addition reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhang Y, Wu W, Fu C, Huang X, Ma S. Benzene construction via Pd-catalyzed cyclization of 2,7-alkadiynylic carbonates in the presence of alkynes. Chem Sci 2019; 10:2228-2235. [PMID: 30881648 PMCID: PMC6385558 DOI: 10.1039/c8sc04681f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
A palladium-catalyzed highly regio- and chemo-selective cyclization of 2,7-alkadiynylic carbonates with functionalized alkynes to construct 1,3-dihydroisobenzofuran and isoindoline derivatives under mild conditions has been developed. Functional groups such as alcohol, sulfonamide, and indoles could be well tolerated. After careful mechanistic studies, a mechanism involving oxidative addition and regioselectivity-defined double alkyne insertions has been proposed.
Collapse
Affiliation(s)
- Yuchen Zhang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Wangteng Wu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| |
Collapse
|
10
|
Uba AI, Yelekçi K. Pharmacophore-based virtual screening for identification of potential selective inhibitors of human histone deacetylase 6. Comput Biol Chem 2018; 77:318-330. [PMID: 30463049 DOI: 10.1016/j.compbiolchem.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Abstract
Histone deacetylase (HDAC) 6 plays a role in oncogenic transformation and cancer metastasis via tubulin deacetylation, making it a critical target for anticancer drug design. However, lack of selectivity shown by many of the current HDAC6 inhibitors in clinical use and trials prompts the continuous search for selective inhibitors. Here, 10 pharmacophore hypotheses were developed based on the 3D common features of training set of 20 HDAC inhibitors in clinical use and trials. The hypotheses were validated using a test set of another 20 HDAC inhibitors along with 400 inactive (decoys) molecules based on Güner-Henry pharmacophore scoring method. Hypothesis 1 consisting of 1 H-bond donor, 1 H-bond acceptor and 2 hydrophobic features, was used to screen "DruglikeDiverse" database using Biovia Discovery Studio 4.5. The top 10 hit compounds were selected based on the pharmacophore fit values (>3.00). Their binding affinity against HDAC6 compared to class I HDACs (1, 2, 3 & 8) and a class IIa member (HDAC7), was calculated by molecular docking using AutoDock4. The stability of binding modes of 2 potential HDAC6-selective inhibitors (ENA501965 and IBS399024) was examined by 30 ns-molecular dynamics (MD) simulation using nanoscale MD (NAMD) software. Both ligands showed potential stability in HDAC6 active site over time. Therefore, these may provide additional scaffolds for further optimization towards the design of safe, potent and selective HDAC6 inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Fatih, Istanbul, Turkey; Centre for Biotechnology Research, Bayero University, P.M.B 3011, B.U.K road, Kano, Nigeria
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Fatih, Istanbul, Turkey.
| |
Collapse
|
11
|
Uba AI, Yelekçi K. Carboxylic acid derivatives display potential selectivity for human histone deacetylase 6: Structure-based virtual screening, molecular docking and dynamics simulation studies. Comput Biol Chem 2018; 75:131-142. [PMID: 29859380 DOI: 10.1016/j.compbiolchem.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022]
Abstract
Human histone deacetylase 6 (HDAC6) has been shown to play a major role in oncogenic cell transformation via deacetylation of α-tubulin, making it a viable target of anticancer drug design and development. The crystal structure of HDAC6 catalytic domain 2 has been recently made available, providing avenues for structure-based drug design campaign. Here, in our continuous effort to identify potentially selective HDAC6 inhibitors, structure-based virtual screening of ∼72 461 compounds was carried out using Autodock Vina. The top 100 compounds with calculated ΔG < -10 kcal/mol were manually inspected for binding mode orientation. Furthermore, the top 20 compounds with reasonable binding modes were evaluated for selectivity by further docking against HDAC6 and HDAC7 using Autodock4. Four compounds with a carboxylic fragment, displayed potential selectivity for HDAC6 over HDAC7, and were found to have good druglike and ADMET properties. Their docking complexes were then submitted to 10 ns-molecular dynamics (MD) simulation using nanoscale MD (NAMD) software, to examine the stability of ligand binding modes. These predicted inhibitors remained bound to HDAC6 in the presence of water and ions, and the root-mean-square deviation (RMSD), radius of gyration (Rg) and nonbond distance (protein-ligand) profiles suggested that they might be stable over time of the simulation. This study may provide scaffolds for further lead optimization towards the design of HDAC6 inhibitors with improved selectivity.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali Campus, 34083, Fatih, Istanbul, Turkey; Centre for Biotechnology Research, Bayero University Kano, P.M.B 3011, Kano, Nigeria
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali Campus, 34083, Fatih, Istanbul, Turkey.
| |
Collapse
|
12
|
Albano G, Aronica LA. Potentiality and Synthesis of O- and N-Heterocycles: Pd-Catalyzed Cyclocarbonylative Sonogashira Coupling as a Valuable Route to Phthalans, Isochromans, and Isoindolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale; University of Pisa; Via G. Moruzzi 13 56124 Pisa Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale; University of Pisa; Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
13
|
Zagni C, Floresta G, Monciino G, Rescifina A. The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 2017; 37:1373-1428. [PMID: 28181261 DOI: 10.1002/med.21437] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play a crucial role in the remodeling of chromatin, and are involved in the epigenetic regulation of gene expression. In the last decade, inhibition of HDACs came out as a target for specific epigenetic changes associated with cancer and other diseases. Until now, more than 20 HDAC inhibitors (HDACIs) have entered clinical studies, and some of them (e.g., vorinostat, romidepsin) have been approved for the treatment of cutaneous T-cell lymphoma. This review provides an overview of current knowledge, progress, and molecular mechanisms of HDACIs, covering a period from 2011 until 2015.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giulia Monciino
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
14
|
Sharma M, Khan I, Khan S, Mahar R, Shukla SK, Kant R, Chauhan PM. Facile ligand-free Pd-catalyzed tandem C–C/C–N coupling reaction: a novel access to highly diverse tetrazole tag isoindoline derivatives. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Novel phenyl and pyridyl substituted derivatives of isoindolines: Synthesis, antitumor activity and DNA binding features. Eur J Med Chem 2014; 87:372-85. [DOI: 10.1016/j.ejmech.2014.09.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022]
|
16
|
Parmar D, Rueping M. Mild and metal-free oxy- and amino-fluorination for the synthesis of fluorinated heterocycles. Chem Commun (Camb) 2014; 50:13928-31. [DOI: 10.1039/c4cc05027d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Tan Q, Zhang Z, Hui J, Zhao Y, Zhu L. Synthesis and anticancer activities of thieno[3,2-d]pyrimidines as novel HDAC inhibitors. Bioorg Med Chem 2014; 22:358-65. [DOI: 10.1016/j.bmc.2013.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
18
|
Differding E. Drug Discovery Alliances in India-Indications, Targets, and New Chemical Entities. ChemMedChem 2013; 9:43-60. [DOI: 10.1002/cmdc.201300341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Edmond Differding
- Differding Consulting s.p.r.l. Route de Blocry 55, 1348 Louvain-la-Neuve (Belgium).
| |
Collapse
|
19
|
Lee HY, Yang CR, Lai MJ, Huang HL, Hsieh YL, Liu YM, Yeh TK, Li YH, Mehndiratta S, Teng CM, Liou JP. 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indolines Histone Deacetylase Inhibitors Are Potent Cytokine Release Suppressors. Chembiochem 2013; 14:1248-54. [DOI: 10.1002/cbic.201300201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 11/09/2022]
|
20
|
Zhu S, Cao J, Wu L, Huang X. Synthesis of Polycyclic Isoindoline Derivatives via Tandem Pd-Catalyzed Coupling, Propargyl–Allenyl Isomerization, [4 + 2] Cycloaddition and Aromatization Reaction. J Org Chem 2012; 77:10409-15. [DOI: 10.1021/jo301437k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shugao Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Jian Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Luling Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Xian Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 2012; 4:505-24. [PMID: 22416777 DOI: 10.4155/fmc.12.3] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) have now emerged as a powerful new class of small-molecule therapeutics acting through the regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. Over 490 clinical trials have been initiated in the last 10 years, culminating in the approval of two structurally distinct HDACis - SAHA (vorinostat, Zolinza™) and FK228 (romidepsin, Istodax™). However, the current HDACis have serious limitations, including ineffectively low concentrations in solid tumors and cardiac toxicity, which is hindering their progress in the clinic. Herein, we review the primary paradigms being pursued to overcome these hindrances, including HDAC isoform selectivity, localized administration, and targeting cap groups to achieve selective tissue and cell type distribution.
Collapse
|
22
|
Zuo M, Zheng YW, Lu SM, Li Y, Zhang SQ. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC-EGFR dual inhibitors. Bioorg Med Chem 2012; 20:4405-12. [PMID: 22698782 DOI: 10.1016/j.bmc.2012.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
Abstract
A novel series of N-aryl salicylamides with a hydroxamic acid moiety at 5-position were synthesized efficiently. Their activities against EGFR kinase and HDACs were evaluated. All compounds displayed inhibitory activity against EGFR and HDACs. The antiproliferative activities of synthesized compounds were evaluated by MTT method against human cancer cell lines A431, A549 and HL-60. Compound 1o showed the most potent inhibitory activity against A431 and A549. Compounds 1k and 1n exhibited higher potency against HL-60 than gefitinib and SAHA. N-Aryl salicylamides with a hydroxamic acid moiety at 5-position is another new HDAC-EGFR dual inhibitors.
Collapse
Affiliation(s)
- Miao Zuo
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | | | | | | | | |
Collapse
|