1
|
Young MK, Wang JD. From dusty shelves toward the spotlight: growing evidence for Ap4A as an alarmone in maintaining RNA stability and proteostasis. Curr Opin Microbiol 2024; 81:102536. [PMID: 39216180 PMCID: PMC11390322 DOI: 10.1016/j.mib.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Bacteria thrive in diverse environments and must withstand various stresses. A key stress response mechanism is the reprogramming of macromolecular biosynthesis and metabolic processes through alarmones - signaling nucleotides that accumulate intracellularly in response to metabolic stress. Diadenosine tetraphosphate (Ap4A), a putative alarmone, is produced in a noncanonical reaction by universally conserved aminoacyl-tRNA synthetases. Ap4A is ubiquitous across all domains of life and accumulates during heat and oxidative stress. Despite its early discovery in 1966, Ap4A's alarmone status remained inconclusive. Recent discoveries identified Ap4A as a precursor to RNA 5' caps in Escherichia coli. Additionally, Ap4A was found to directly bind to and allosterically inhibit the purine biosynthesis enzyme inosine 5'-monophosphate dehydrogenase, regulating guanosine triphosphate levels and enabling heat resistance in Bacillus subtilis. These findings, along with previous research, strongly suggest that Ap4A plays a crucial role as an alarmone, warranting further investigation to fully elucidate its functions.
Collapse
Affiliation(s)
- Megan Km Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Cervoni M, Sposato D, Ferri G, Bähre H, Leoni L, Rampioni G, Visca P, Recchiuti A, Imperi F. The diadenosine tetraphosphate hydrolase ApaH contributes to Pseudomonas aeruginosa pathogenicity. PLoS Pathog 2024; 20:e1012486. [PMID: 39159286 PMCID: PMC11361744 DOI: 10.1371/journal.ppat.1012486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/29/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
The opportunistic bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections that are difficult to treat, largely because of the spread of antibiotic-resistant isolates. Antivirulence therapy, í.e. the use of drugs that inhibit the expression or activity of virulence factors, is currently considered an attractive strategy to reduce P. aeruginosa pathogenicity and complement antibiotic treatments. Because of the multifactorial nature of P. aeruginosa virulence and the broad arsenal of virulence factors this bacterium can produce, the regulatory networks that control the expression of multiple virulence traits have been extensively explored as potential targets for antivirulence drug development. The intracellular signaling molecule diadenosine tetraphosphate (Ap4A) has been reported to control stress resistance and virulence-related traits in some bacteria, but its role has not been investigated in P. aeruginosa so far. To fill this gap, we generated a mutant of the reference strain P. aeruginosa PAO1 that lacks the Ap4A-hydrolysing enzyme ApaH and, consequently, accumulates high intracellular levels of Ap4A. Phenotypic and transcriptomic analyses revealed that the lack of ApaH causes a drastic reduction in the expression of several virulence factors, including extracellular proteases, elastases, siderophores, and quorum sensing signal molecules. Accordingly, infection assays in plant and animal models demonstrated that ApaH-deficient cells are significantly impaired in infectivity and persistence in different hosts, including mice. Finally, deletion of apaH in P. aeruginosa clinical isolates demonstrated that the positive effect of ApaH on the production of virulence-related traits and on infectivity is conserved in P. aeruginosa. This study provides the first evidence that the Ap4A-hydrolysing enzyme ApaH is important for P. aeruginosa virulence, highlighting this protein as a novel potential target for antivirulence therapies against P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Giulia Ferri
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Ji X, Yu R, Zhu M, Zhang C, Zhou L, Cai T, Li W. Diadenosine tetraphosphate modulated quorum sensing in bacteria treated with kanamycin. BMC Microbiol 2023; 23:353. [PMID: 37978430 PMCID: PMC10657157 DOI: 10.1186/s12866-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The dinucleotide alarmone diadenosine tetraphosphate (Ap4A), which is found in cells, has been shown to affect the survival of bacteria under stress. RESULTS Here, we labeled Ap4A with biotin and incubated the labeled Ap4A with the total proteins extracted from kanamycin-treated Escherichia coli to identify the Ap4A binding protein in bacteria treated with kanamycin. Liquid chromatography‒mass spectrometry (LCMS) and bioinformatics were used to identify novel proteins that Ap4A interacts with that are involved in biofilm formation, quorum sensing, and lipopolysaccharide biosynthesis pathways. Then, we used the apaH knockout strain of E. coli K12-MG1655, which had increased intracellular Ap4A, to demonstrate that Ap4A affected the expression of genes in these three pathways. We also found that the swarming motility of the apaH mutant strain was reduced compared with that of the wild-type strain, and under kanamycin treatment, the biofilm formation of the mutant strain decreased. CONCLUSIONS These results showed that Ap4A can reduce the survival rate of bacteria treated with kanamycin by regulating quorum sensing (QS). These effects can expand the application of kanamycin combinations in the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xia Ji
- School of Life Science, Huizhou University, Huizhou, 516007, China.
| | - Ruojing Yu
- School of Life Science, Huizhou University, Huizhou, 516007, China
| | - Meilian Zhu
- School of Life Science, Huizhou University, Huizhou, 516007, China
| | - Cuilin Zhang
- School of Life Science, Huizhou University, Huizhou, 516007, China
| | - Libin Zhou
- School of Life Science, Huizhou University, Huizhou, 516007, China
| | - Tianshu Cai
- Huizhou Health Sciences Polytechnic, Huizhou, 516025, China
| | - Weiwei Li
- Huizhou Health Sciences Polytechnic, Huizhou, 516025, China
| |
Collapse
|
4
|
Zegarra V, Mais CN, Freitag J, Bange G. The mysterious diadenosine tetraphosphate (AP4A). MICROLIFE 2023; 4:uqad016. [PMID: 37223742 PMCID: PMC10148737 DOI: 10.1093/femsml/uqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.
Collapse
Affiliation(s)
- Victor Zegarra
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Johannes Freitag
- Department of Biology, Philipps University Marburg, Marburg 35043, Germany
| | - Gert Bange
- Corresponding author. Karl-von-Frisch Strasse 14, 35043 Marburg, Germany. E-mail:
| |
Collapse
|
5
|
Giammarinaro PI, Young MKM, Steinchen W, Mais CN, Hochberg G, Yang J, Stevenson DM, Amador-Noguez D, Paulus A, Wang JD, Bange G. Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis. Nat Microbiol 2022; 7:1442-1452. [PMID: 35953658 PMCID: PMC10439310 DOI: 10.1038/s41564-022-01193-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Diadenosine tetraphosphate (Ap4A) is a putative second messenger molecule that is conserved from bacteria to humans. Nevertheless, its physiological role and the underlying molecular mechanisms are poorly characterized. We investigated the molecular mechanism by which Ap4A regulates inosine-5'-monophosphate dehydrogenase (IMPDH, a key branching point enzyme for the biosynthesis of adenosine or guanosine nucleotides) in Bacillus subtilis. We solved the crystal structure of BsIMPDH bound to Ap4A at a resolution of 2.45 Å to show that Ap4A binds to the interface between two IMPDH subunits, acting as the glue that switches active IMPDH tetramers into less active octamers. Guided by these insights, we engineered mutant strains of B. subtilis that bypass Ap4A-dependent IMPDH regulation without perturbing intracellular Ap4A pools themselves. We used metabolomics, which suggests that these mutants have a dysregulated purine, and in particular GTP, metabolome and phenotypic analysis, which shows increased sensitivity of B. subtilis IMPDH mutant strains to heat compared with wild-type strains. Our study identifies a central role for IMPDH in remodelling metabolism and heat resistance, and provides evidence that Ap4A can function as an alarmone.
Collapse
Affiliation(s)
- Pietro I Giammarinaro
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Megan K M Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wieland Steinchen
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Georg Hochberg
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Anja Paulus
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gert Bange
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
6
|
Zheng T, Jing M, Gong T, Yan J, Zeng J, Li Y. Deletion of the yqeK gene leads to the accumulation of Ap4A and reduced biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2021; 37:9-21. [PMID: 34761536 DOI: 10.1111/omi.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Diadenosine-5',5'''-P1, P4-tetraphosphate (Ap4A) is a second messenger playing a crucial role in various life activities of bacteria. The increase of Ap4A expression is pleiotropic, resulting in an impairment in the formation of biofilm and other physiological functions in some bacteria. However, Ap4A function in Streptococcus mutans, an important pathogen related to dental caries, remains unknown. In this work, the Ap4A hydrolase, YqeK, was identified and characterized in S. mutans. Then, the effects of yqeK deletion on the growth, biofilm formation, and exopolysaccharide (EPS) quantification in S. mutans were determined by the assessment of the growth curve, crystal violet, and anthrone-sulfuric acid, respectively, and visualized by microscopy. The results showed that the in-frame deletion of the yqeK gene in S. mutans UA159 led to an increase in Ap4A levels, lag phase in the early growth, as well as decrease in biofilm formation and water-insoluble exopolysaccharide production. Global gene expression profile showed that the expression of 88 genes was changed in the yqeK mutant, and among these, 42 were upregulated and 46 were downregulated when compared with the wild-type S. mutans UA159. Upregulated genes were mainly involved in post-translational modification, protein turnover, and chaperones, while downregulated genes were mainly involved in carbohydrate transport and metabolism. Important virulence genes related to biofilms, such as gtfB, gtfC, and gbpC, were also significantly downregulated. In conclusion, these results indicated that YqeK affected the formation of biofilms and the expression of biofilm-related genes in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Krüger L, Albrecht CJ, Schammann HK, Stumpf FM, Niedermeier ML, Yuan Y, Stuber K, Wimmer J, Stengel F, Scheffner M, Marx A. Chemical proteomic profiling reveals protein interactors of the alarmones diadenosine triphosphate and tetraphosphate. Nat Commun 2021; 12:5808. [PMID: 34608152 PMCID: PMC8490401 DOI: 10.1038/s41467-021-26075-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotides diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) are formed in prokaryotic and eukaryotic cells. Since their concentrations increase significantly upon cellular stress, they are considered to be alarmones triggering stress adaptive processes. However, their cellular roles remain elusive. To elucidate the proteome-wide interactome of Ap3A and Ap4A and thereby gain insights into their cellular roles, we herein report the development of photoaffinity-labeling probes and their employment in chemical proteomics. We demonstrate that the identified ApnA interactors are involved in many fundamental cellular processes including carboxylic acid and nucleotide metabolism, gene expression, various regulatory processes and cellular response mechanisms and only around half of them are known nucleotide interactors. Our results highlight common functions of these ApnAs across the domains of life, but also identify those that are different for Ap3A or Ap4A. This study provides a rich source for further functional studies of these nucleotides and depicts useful tools for characterization of their regulatory mechanisms in cells. Diadenosine polyphosphates (ApAs) are involved in cellular stress signaling but only a few molecular targets have been characterized so far. Here, the authors develop ApnA-based photoaffinity-labeling probes and use them to identify Ap3A and Ap4A binding proteins in human cell lysates.
Collapse
Affiliation(s)
- Lena Krüger
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Christoph J Albrecht
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Florian M Stumpf
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yizhi Yuan
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Katrin Stuber
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josua Wimmer
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
8
|
Ferguson F, McLennan AG, Urbaniak MD, Jones NJ, Copeland NA. Re-evaluation of Diadenosine Tetraphosphate (Ap 4A) From a Stress Metabolite to Bona Fide Secondary Messenger. Front Mol Biosci 2020; 7:606807. [PMID: 33282915 PMCID: PMC7705103 DOI: 10.3389/fmolb.2020.606807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular homeostasis requires adaption to environmental stress. In response to various environmental and genotoxic stresses, all cells produce dinucleoside polyphosphates (NpnNs), the best studied of which is diadenosine tetraphosphate (Ap4A). Despite intensive investigation, the precise biological roles of these molecules have remained elusive. However, recent studies have elucidated distinct and specific signaling mechanisms for these nucleotides in prokaryotes and eukaryotes. This review summarizes these key discoveries and describes the mechanisms of Ap4A and Ap4N synthesis, the mediators of the cellular responses to increased intracellular levels of these molecules and the hydrolytic mechanisms required to maintain low levels in the absence of stress. The intracellular responses to dinucleotide accumulation are evaluated in the context of the "friend" and "foe" scenarios. The "friend (or alarmone) hypothesis" suggests that ApnN act as bona fide secondary messengers mediating responses to stress. In contrast, the "foe" hypothesis proposes that ApnN and other NpnN are produced by non-canonical enzymatic synthesis as a result of physiological and environmental stress in critically damaged cells but do not actively regulate mitigating signaling pathways. In addition, we will discuss potential target proteins, and critically assess new evidence supporting roles for ApnN in the regulation of gene expression, immune responses, DNA replication and DNA repair. The recent advances in the field have generated great interest as they have for the first time revealed some of the molecular mechanisms that mediate cellular responses to ApnN. Finally, areas for future research are discussed with possible but unproven roles for intracellular ApnN to encourage further research into the signaling networks that are regulated by these nucleotides.
Collapse
Affiliation(s)
- Freya Ferguson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Alexander G McLennan
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Nigel J Jones
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nikki A Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
9
|
Fernández-Justel D, Peláez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem 2019; 294:14768-14775. [PMID: 31416831 DOI: 10.1074/jbc.ac119.010055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Indexed: 11/06/2022] Open
Abstract
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the de novo guanine nucleotide biosynthetic pathway. Because of its involvement in the control of cell division and proliferation, IMPDH represents a therapeutic for managing several diseases, including microbial infections and cancer. IMPDH must be tightly regulated, but the molecular mechanisms responsible for its physiological regulation remain unknown. To this end, we recently reported an important role of adenine and guanine mononucleotides that bind to the regulatory Bateman domain to allosterically modulate the catalytic activity of eukaryotic IMPDHs. Here, we have used enzyme kinetics, X-ray crystallography, and small-angle X-ray scattering (SAXS) methodologies to demonstrate that adenine/guanine dinucleoside polyphosphates bind to the Bateman domain of IMPDH from the fungus Ashbya gossypii with submicromolar affinities. We found that these dinucleoside polyphosphates modulate the catalytic activity of IMPDHs in vitro by efficiently competing with the adenine/guanine mononucleotides for the allosteric sites. These results suggest that dinucleoside polyphosphates play important physiological roles in the allosteric regulation of IMPDHs by adding an additional mechanism for fine-tuning the activities of these enzymes. We propose that these findings may have important implications for the design of therapeutic strategies to inhibit IMPDHs.
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci U S A 2019; 116:9578-9585. [PMID: 31004054 PMCID: PMC6511005 DOI: 10.1073/pnas.1822026116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper demonstrates that aminoglycoside antibiotics induce the production of the Ap4A in bacteria. Increased intracellular Ap4A, in turn, promotes bacterial cell killing by this class of antibiotics, which correlated well with elevated damage to the bacterial membrane upon aminoglycoside treatment. These findings reveal a striking connection between aminoglycoside killing and the Ap4A production particularly under conditions of oxidative stress. Importantly, the results of this study suggest that targeting Ap4A degradation or inducing its hypersynthesis during therapy with aminoglycosides might help solve the well-known toxicity issue associated with this class of antibiotics by reducing the level of drug needed for effective treatment. Second messenger molecules play important roles in the responses to various stimuli that can determine a cell's fate under stress conditions. Here, we report that lethal concentrations of aminoglycoside antibiotics result in the production of a dinucleotide alarmone metabolite–diadenosine tetraphosphate (Ap4A), which promotes bacterial cell killing by this class of antibiotics. We show that the treatment of Escherichia coli with lethal concentrations of kanamycin (Kan) dramatically increases the production of Ap4A. This elevation of Ap4A is dependent on the production of a hydroxyl radical and involves the induction of the Ap4A synthetase lysyl-tRNA synthetase (LysU). Ectopic alteration of intracellular Ap4A concentration via the elimination of the Ap4A phosphatase diadenosine tetraphosphatase (ApaH) and the overexpression of LysU causes over a 5,000-fold increase in bacterial killing by aminoglycosides. This increased susceptibility to aminoglycosides correlates with bacterial membrane disruption. Our findings provide a role for the alarmone Ap4A and suggest that blocking Ap4A degradation or increasing its synthesis might constitute an approach to enhance aminoglycoside killing potency by broadening their therapeutic index and thereby allowing lower nontoxic dosages of these antibiotics to be used in the treatment of multidrug-resistant infections.
Collapse
|
11
|
Despotović D, Brandis A, Savidor A, Levin Y, Fumagalli L, Tawfik DS. Diadenosine tetraphosphate (Ap4A) - an E. coli alarmone or a damage metabolite? FEBS J 2017; 284:2194-2215. [PMID: 28516732 DOI: 10.1111/febs.14113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Under stress, metabolism is changing: specific up- or down-regulation of proteins and metabolites occurs as well as side effects. Distinguishing specific stress-signaling metabolites (alarmones) from side products (damage metabolites) is not trivial. One example is diadenosine tetraphosphate (Ap4A) - a side product of aminoacyl-tRNA synthetases found in all domains of life. The earliest observations suggested that Ap4A serves as an alarmone for heat stress in Escherichia coli. However, despite 50 years of research, the signaling mechanisms associated with Ap4A remain unknown. We defined a set of criteria for distinguishing alarmones from damage metabolites to systematically classify Ap4A. In a nutshell, no indications for a signaling cascade that is triggered by Ap4A were found; rather, we found that Ap4A is efficiently removed in a constitutive, nonregulated manner. Several fold perturbations in Ap4A concentrations have no effect, yet accumulation at very high levels is toxic due to disturbance of zinc homeostasis, and also because Ap4A's structural overlap with ATP can result in spurious binding and inactivation of ATP-binding proteins. Overall, Ap4A met all criteria for a damage metabolite. While we do not exclude any role in signaling, our results indicate that the damage metabolite option should be considered as the null hypothesis when examining Ap4A and other metabolites whose levels change upon stress.
Collapse
Affiliation(s)
- Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Abstract
Understanding and exploiting molecular mechanisms in biology is central to chemical biology. Chemical biology studies of biological macromolecules are now in a perfect continuum with molecular level and nanomolecular level mechanistic studies involving whole organisms. The potential opportunity presented by such studies is the design and creation of genuine precision active pharmaceutical ingredients (APIs; including DNA, siRNA, smaller-molecule bioactives) that demonstrate exceptional levels of disease target specificity and selectivity. This article covers the best of my personal and collaborative academic research work using an organic chemistry and chemical biology approach towards understanding biological molecular recognition processes, work that appears to be leading to the generation of novel precision APIs with genuine potential for the treatments of major chronic diseases that afflict globally.
Collapse
|
13
|
Anashkin VA, Salminen A, Tuominen HK, Orlov VN, Lahti R, Baykov AA. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria. J Biol Chem 2015; 290:27594-603. [PMID: 26400082 DOI: 10.1074/jbc.m115.680272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.
Collapse
Affiliation(s)
- Viktor A Anashkin
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Anu Salminen
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Heidi K Tuominen
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Victor N Orlov
- the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Reijo Lahti
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Alexander A Baykov
- the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| |
Collapse
|
14
|
Azhar MA, Wright M, Kamal A, Nagy J, Miller AD. Biotin-c10-AppCH2ppA is an effective new chemical proteomics probe for diadenosine polyphosphate binding proteins. Bioorg Med Chem Lett 2014; 24:2928-33. [PMID: 24852122 DOI: 10.1016/j.bmcl.2014.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
Here we report on the synthesis of a synthetic, stable biotin-c10-AppCH2ppA conjugate involving an unusual Cannizzaro reaction step. This conjugate is used to bind prospective Ap4A binding proteins from Escherichia coli bacterial cell lyzates. Following binding, identities of these proteins are then determined smoothly by a process of magnetic bio-panning and electrospray mass spectrometry. Protein hits appear to be a definitive set of stress protein related targets. While this hit list may not be exclusive, and may vary with the nature of sampling conditions and organism status, nevertheless hits do appear to correspond with bona fide Ap4A-binding proteins. Therefore these hits represent a sound basis on which to construct new hypotheses concerning the cellular importance of Ap4A to bacterial cells and the potential biological significance of Ap4A-protein binding interactions.
Collapse
Affiliation(s)
- M Ameruddin Azhar
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad, India
| | - Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH,UK
| | - Ahmed Kamal
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad, India
| | - Judith Nagy
- Institute of Biomedical Engineering, Armstrong Road, Imperial College London, London SW7 2AZ,UK
| | - Andrew D Miller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH,UK.
| |
Collapse
|
15
|
Wright M, Azhar MA, Kamal A, Miller AD. Syntheses of stable, synthetic diadenosine polyphosphate analogues using recombinant histidine-tagged lysyl tRNA synthetase (LysU). Bioorg Med Chem Lett 2014; 24:2346-52. [PMID: 24736113 DOI: 10.1016/j.bmcl.2014.03.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/18/2022]
Abstract
Recombinant Escherichia coli lysyl-tRNA synthase (LysU) has been previously utilised in the production of stabile, synthetic diadenosine polyphosphate (ApnA) analogues. Here we report on the extended use of a new recombinant histidine residue-tagged LysU as a tool for highly controlled phosphatephosphate bond formation between nucleotides, avoiding the need for complex protecting group chemistries. Resulting high yielding tandem LysU-based biosynthetic-synthetic/synthetic-biosynthetic strategies emerge for the preparation of varieties of ApnA analogues directly from inexpensive natural nucleotides and nucleosides. Analogues so formed make a useful small library with which to probe ApnA activities in vitro and in vivo leading to the discovery of new, potentially potent biopharmaceuticals active against chronic pain and other chronic, high-burden disease states.
Collapse
Affiliation(s)
- Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH, UK
| | - M Ameruddin Azhar
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK; Organic-I Division, Indian Institute of Chemical Technology, Habsigida, Hyderabad, India
| | - Ahmed Kamal
- Organic-I Division, Indian Institute of Chemical Technology, Habsigida, Hyderabad, India
| | - Andrew D Miller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
16
|
Guo W, Liu S, Peng J, Wei X, Sun Y, Qiu Y, Gao G, Wang P, Xu Y. Examining the interactome of huperzine A by magnetic biopanning. PLoS One 2012; 7:e37098. [PMID: 22615909 PMCID: PMC3353884 DOI: 10.1371/journal.pone.0037098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 04/18/2012] [Indexed: 11/25/2022] Open
Abstract
Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shupeng Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institute of Biomedical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Jinliang Peng
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ye Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yangsheng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guangwei Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Peng Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|