1
|
Panda SS, Sharma NK. A new transient directing group diethoxyethyl-L-proline facilitates ortho-arylation of aryl-amines/-amino acids via Pd-catalyzed C(sp 2)-H activation. Org Biomol Chem 2023; 21:1468-1477. [PMID: 36655605 DOI: 10.1039/d2ob02145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mono-ortho-arylated arylamines are constituents of various natural products but their syntheses are challenging. This report describes a new synthetic methodology for the ortho-arylation of arylamines and α-aromatic amino acids (phenylglycine and phenylalanine) through a Pd-catalyzed C(sp2)-H activation using the synthetic transient directing group diethoxyethyl-L-proline (DEP). A catalytic amount of diethoxyethyl-L-proline is sufficient to form mono-arylated arylamines as the major products using aryliodides. This method could be useful for the synthesis of various biphenyl amines and novel peptidomimetics.
Collapse
Affiliation(s)
- Subhashree S Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni Campus, Bhubaneswar-752050, Odisha, India. .,Homi Bhaba National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094 India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni Campus, Bhubaneswar-752050, Odisha, India. .,Homi Bhaba National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094 India
| |
Collapse
|
2
|
Cellulose Schiff base-supported Pd(II): An efficient heterogeneous catalyst for Suzuki Miyaura cross-coupling. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04528-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Mekala S, Nelson G, Li YM. Recent developments of small molecule γ-secretase modulators for Alzheimer's disease. RSC Med Chem 2020; 11:1003-1022. [PMID: 33479693 PMCID: PMC7513388 DOI: 10.1039/d0md00196a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disorder, marked by memory loss and a decline in cognitive function. The major hallmarks of AD are the presence of intracellular neurofibrillary tau tangles (NFTs) composed of hyperphosphorylated tau proteins and extracellular plaques composed of amyloid beta peptides (Aβ). The amyloid (Aβ) cascade hypothesis proposes that the AD pathogenesis is initiated by the accumulation of Aβ peptides in the parenchyma of the brain. An aspartyl intramembranal protease called γ-secretase is responsible for the production of Aβ by the cleavage of the amyloid precursor protein (APP). Clinical studies of γ-secretase inhibitors (GSIs) for AD failed due to the lack of substrate specificity. Therefore, γ-secretase modulators (GSMs) have been developed as potential disease modifying agents to modulate the γ-secretase cleavage activity towards the production of toxic Aβ42 peptides. Following the first-generation 'nonsteroidal anti-inflammatory drug' (NSAID) based GSMs, second-generation GSMs (carboxylic acid based NSAID derivatives and non-NSAID derived heterocyclic analogues), as well as natural product-based GSMs, have been developed. In this review, we focus on the recent developments of small molecule-based GSMs that show potential improvements in terms of drug-like properties as well as their current status in human clinical trials and the future perspectives of GSM research.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Grady Nelson
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Yue-Ming Li
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
- Pharmacology Graduate Program , Weill Graduate School of Medical Sciences of Cornell University , New York , New York 10021 , USA
| |
Collapse
|
4
|
Kapoor M, Chand-Thakuri P, Young MC. Carbon Dioxide-Mediated C(sp2)–H Arylation of Primary and Secondary Benzylamines. J Am Chem Soc 2019; 141:7980-7989. [DOI: 10.1021/jacs.9b03375] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohit Kapoor
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Pratibha Chand-Thakuri
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Michael C. Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
5
|
Han HS, Oh EH, Jung YS, Han SB. Photoredox-Catalyzed Trifluoromethylative Intramolecular Cyclization: Synthesis of CF3-Containing Heterocyclic Compounds. Org Lett 2018; 20:1698-1702. [DOI: 10.1021/acs.orglett.8b00648] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hong Sik Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Eun Hye Oh
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young-Sik Jung
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
6
|
Xiao KJ, Chu L, Chen G, Yu JQ. Kinetic Resolution of Benzylamines via Palladium(II)-Catalyzed C-H Cross-Coupling. J Am Chem Soc 2016; 138:7796-800. [PMID: 27249208 PMCID: PMC5516893 DOI: 10.1021/jacs.6b04660] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A Pd(II)-catalyzed enantioselective C-H cross-coupling of benzylamines via kinetic resolution has been achieved using chiral mono-N-protected α-amino-O-methylhydroxamic acid (MPAHA) ligands. Both chiral benzylamines and ortho-arylated benzylamines are obtained in high enantiomeric purity. The use of a readily removable nosyl (Ns) protected amino group as the directing group is a crucial practical advantage. Moreover, the ortho-arylated benzylamine products could be further transformed into chiral 6-substituted 5,6-dihydrophenanthridines as important structural motifs in natural products and bioactive molecules.
Collapse
Affiliation(s)
- Kai-Jiong Xiao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Ling Chu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Gang Chen
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
7
|
Tan PW, Haughey M, Dixon DJ. Palladium(ii)-catalysed ortho-arylation of N-benzylpiperidines. Chem Commun (Camb) 2015; 51:4406-9. [DOI: 10.1039/c5cc00410a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A simple and mild protocol for saturated N-heterocycle directed ortho-C–H arylation under Pd-catalysis is reported.
Collapse
Affiliation(s)
- Peng Wen Tan
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Maxwell Haughey
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
8
|
An approach to design potent anti-Alzheimer’s agents by 3D-QSAR studies on fused 5,6-bicyclic heterocycles as γ-secretase modulators using kNN–MFA methodology. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Artamonov OS, Slobodyanyuk EY, Volochnyuk DM, Komarov IV, Tolmachev AA, Mykhailiuk PK. Synthesis of Trifluoromethyl-Substituted 3-Azabicyclo[n.1.0]alkanes: Advanced Building Blocks for Drug Discovery. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402158] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Dolfen J, Kenis S, Van Hecke K, De Kimpe N, D'hooghe M. Selective synthesis of functionalized trifluoromethylated pyrrolidines, piperidines, and azepanes starting from 1-tosyl-2-(trifluoromethyl)aziridine. Chemistry 2014; 20:10650-3. [PMID: 24523231 DOI: 10.1002/chem.201304759] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Indexed: 11/09/2022]
Abstract
This paper reports on the generation and alkylation of the 1-tosyl-2-(trifluoromethyl)aziridin-2-yl anion with ω,ω'-dihaloalkanes, followed by a novel ring-expansion protocol toward 2-CF3-pyrrolidines, 2-CF3-piperidines, and 3-CF3-azepanes. A variety of halogen, oxygen, nitrogen, sulfur, and carbon nucleophiles was used to trigger this ring rearrangement, resulting in CF3-azaheterocycles bearing different types of functionalized side chains.
Collapse
Affiliation(s)
- Jeroen Dolfen
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium), Fax: (+32) 9-264-62-21
| | | | | | | | | |
Collapse
|
11
|
Hall A, Patel TR. γ-Secretase modulators: current status and future directions. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:101-45. [PMID: 24418609 DOI: 10.1016/b978-0-444-63380-4.00003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the current status of γ-secretase modulators, highlighting key compounds by each company involved in the area. The review focuses on the three main chemotypes: acids, imidazoles and related derivatives and natural products. A section on chemical biology and ligand-binding site elucidation studies is also included. The primary source of information is drawn from peer reviewed literature as this permits analysis of PK-PD relationships and subsequent comment. Discussion of the patent literature is included for completeness. From this analysis, the key issues and challenges in the area are highlighted. The review concludes with a summary of the clinical development status and comment on future prospects of the field.
Collapse
Affiliation(s)
- Adrian Hall
- Department of Chemistry, Discovery Research, Neuroscience and General Medicine Product Creation Unit, Eisai Ltd., EMEA Knowledge Centre, Mosquito Way, Hatfield, United Kingdom
| | - Toshal R Patel
- Department of BioPharmacology, Discovery Research, Neuroscience and General Medicine Product Creation Unit, Eisai Ltd., EMEA Knowledge Centre, Mosquito Way, Hatfield, United Kingdom
| |
Collapse
|
12
|
Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L. γ-Secretase inhibitors and modulators. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2898-907. [PMID: 23791707 PMCID: PMC3857966 DOI: 10.1016/j.bbamem.2013.06.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid β peptides (Aβ) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid β protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
13
|
Pettersson M, Stepan AF, Kauffman GW, Johnson DS. Novel γ-secretase modulators for the treatment of Alzheimer's disease: a review focusing on patents from 2010 to 2012. Expert Opin Ther Pat 2013; 23:1349-66. [PMID: 23875696 DOI: 10.1517/13543776.2013.821465] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION γ-Secretase is the enzyme responsible for the final step of amyloid precursor protein proteolysis to generate Aβ peptides including Aβ42 which is believed to be a toxic species involved in Alzheimer's disease (AD) progression. γ-Secretase modulators (GSMs) have been shown to selectively lower Aβ42 production without affecting total Aβ levels or the formation of γ-secretase substrate intracellular domains such as APP intracellular domain and Notch intracellular domain. Therefore, GSMs have emerged as an important therapeutic strategy for the treatment of AD. AREAS COVERED The literature covering novel GSMs will be reviewed focusing on patents from 2010 to 2012. EXPERT OPINION During the last review period (2008 - 2010) considerable progress was made developing GSMs with improved potency for lowering Aβ42 levels, but most of the compounds resided in unfavorable central nervous system (CNS) drug space. In this review period (2010 - 2012), there is a higher percentage of potent GSM chemical matter that resides in favorable CNS drug space. It is anticipated that clinical candidates will emerge out of this cohort that will be able to test the GSM mechanism of action in the clinic.
Collapse
Affiliation(s)
- Martin Pettersson
- Neuroscience Medicinal Chemistry, Pfizer Worldwide Research and Development , 700 Main Street, Cambridge, MA, 02139 , USA
| | | | | | | |
Collapse
|