1
|
Yu CX, Tan JW, Rullah K, Imran S, Tham CL. Insight parameter drug design for human β-tryptase inhibition integrated molecular docking, QSAR, molecular dynamics simulation, and pharmacophore modelling studies of α-keto-[1,2,4]-oxadiazoles. J Biomol Struct Dyn 2023; 41:12978-12996. [PMID: 36709457 DOI: 10.1080/07391102.2023.2171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Dengue hemorrhagic fever (DHF) is severe dengue with a hallmark of vascular leakage. β-tryptase has been found to promote vascular leakage in DHF patients, which could be a potential target for DHF treatment. This study aims to develop a theoretical background for designing and selecting human β-tryptase inhibitors through computational studies. Thirty-four α-keto-[1,2,3]-oxadiazoles scaffold-based compounds were used to generate 2D-QSAR models and for molecular docking studies with β-tryptase (PDB Code 4A6L). In addition, molecular dynamics (MD) simulation and molecular mechanics generalised born surface area (MM-GBSA) analysis on the binding of the reported most active compound, compound 11e, towards β-tryptase were performed. Finally, a structure-based pharmacophore model was generated. The selected 2D-QSAR models have statistically proven good models by internal and external validation as well as the y-randomization test. The docking results of compound 11e showed lower CDOCKER energy than the 4A6L co-crystallised ligand and a similar binding pattern as the 4A6L co-crystallised ligand. From molecular dynamics simulation, 4A6L in compound 11e bound state has RMSD below 2 Å throughout the 500 ns simulation, indicating the docked complex is stable. Besides, MM-GBSA analysis suggested the 4A6L-compound 11e docked complex (-66.04 Kcal/mol) is structurally as stable as the 4A6L-native ligand co-crystallized structure (-66.84 Kcal/mol). The best pharmacophore model identified features included hydrogen bond acceptor, ionic interaction, hydrophobic interaction, and aromatic ring, which contribute to the inhibitory potency of a compound. This study supplied insight and knowledge for developing novel chemical compounds with improved inhibition of β-tryptase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chai Xin Yu
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jian Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Hrizi A, Thiery E, Romdhani‐Younes M, Jacquemin J, Thibonnet J. Efficient Synthesis of Polysubstituted Furans through a Base‐Promoted Oxacyclization of (
Z
)‐2‐En‐4‐yn‐1‐ols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Asma Hrizi
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Emilie Thiery
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| | - Moufida Romdhani‐Younes
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Johan Jacquemin
- University of Tours Department of Chemistry Laboratoire PCM2E EA 6299 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- Mohammed VI Polytechnic University Materials Science and Nano-Engineering Lot 660-Hay Moulay Rachid 43150 Ben Guerir Morocco
| | - Jérôme Thibonnet
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| |
Collapse
|
3
|
Mast Cells Positive for c-Kit Receptor and Tryptase Correlate with Angiogenesis in Cancerous and Adjacent Normal Pancreatic Tissue. Cells 2021; 10:cells10020444. [PMID: 33669751 PMCID: PMC7923170 DOI: 10.3390/cells10020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Mast cells (MCs) contain proangiogenic factors, in particular tryptase, associated with increased angiogenesis in several tumours. With special reference to pancreatic cancer, few data have been published on the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue (PDAT) and adjacent normal tissue (ANT). In this study, density of mast cells positive for c-Kit receptor (MCDP-c-KitR), density of mast cells positive for tryptase (MCDPT), area of mast cells positive for tryptase (MCAPT), and angiogenesis in terms of microvascular density (MVD) and endothelial area (EA) were evaluated in a total of 45 PDAT patients with stage T2–3N0–1M0. Results: For each analysed tissue parameter, the mean ± standard deviation was evaluated in both PDAT and ANT and differences were evaluated by Student’s t-test (p ranged from 0.001 to 0.005). Each analysed tissue parameter was then correlated to each other one by Pearson t-test analysis (p ranged from 0.01 to 0.03). No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the main clinical–pathological characteristics was found. Conclusions: Our results suggest that tissue parameters increased from ANT to PDAT and that mast cells are strongly associated with angiogenesis in PDAT. On this basis, the inhibition of MCs through tyrosine kinase inhibitors, such as masitinib, or inhibition of tryptase by gabexate mesylate may become potential novel antiangiogenetic approaches in pancreatic cancer therapy.
Collapse
|
4
|
Fazio NF, Russell MH, Flinders SM, Gardner CJ, Webster JB, Hansen MDH. A natural product biflavonoid scaffold with anti-tryptase activity. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:107-115. [PMID: 32840651 DOI: 10.1007/s00210-020-01959-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022]
Abstract
Tryptase is a serine protease that is released from mast cells during allergic responses. Tryptase inhibitors are being explored as treatments for allergic inflammation in the skin and respiratory system, most notably asthma. Here we report direct tryptase inhibition by natural product compounds. Candidate inhibitors were identified by computational screening of a large (98,000 compounds) virtual library of natural product compounds for tryptase enzymatic site binding. Biochemical assays were used to validate the predicted anti-tryptase activity in vitro, revealing a high (four out of six) success rate for predicting binding using the computational docking model. We further assess tryptase inhibition by a biflavonoid scaffold, whose structure-activity relationship is partially defined by assessing the potency of structurally similar analogs.
Collapse
Affiliation(s)
- Nicholas F Fazio
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Michael H Russell
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Steven M Flinders
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Colin J Gardner
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Jace B Webster
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Marc D H Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
5
|
Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell 2020; 179:417-431.e19. [PMID: 31585081 DOI: 10.1016/j.cell.2019.09.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active β-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human β-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a β-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Collapse
Affiliation(s)
- Henry R Maun
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy L Staton
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Dressen
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin T Walters
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Neil N Trivedi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley Morando
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Depratment of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz D Orozco
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin Christensen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Q Hang
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Magda Babina
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rahul Ahuja
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - George H Caughey
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Aija Kusi
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kathila R Alatsis
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Giardina SF, Werner DS, Pingle M, Feinberg PB, Foreman KW, Bergstrom DE, Arnold LD, Barany F. Novel, Self-Assembling Dimeric Inhibitors of Human β Tryptase. J Med Chem 2020; 63:3004-3027. [PMID: 32057241 DOI: 10.1021/acs.jmedchem.9b01689] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-Tryptase, a homotetrameric serine protease, has four identical active sites facing a central pore, presenting an optimized setting for the rational design of bivalent inhibitors that bridge two adjacent sites. Using diol, hydroxymethyl phenols or benzoyl methyl hydroxamates, and boronic acid chemistries to reversibly join two [3-(1-acylpiperidin-4-yl)phenyl]methanamine core ligands, we have successfully produced a series of self-assembling heterodimeric inhibitors. These heterodimeric tryptase inhibitors demonstrate superior activity compared to monomeric modes of inhibition. X-ray crystallography validated the dimeric mechanism of inhibition, and compounds demonstrated high selectivity against related proteases, good target engagement, and tryptase inhibition in HMC1 xenograft models. Screening 3872 possible combinations from 44 boronic acid and 88 diol derivatives revealed several combinations that produced nanomolar inhibition, and seven unique pairs produced greater than 100-fold improvement in potency over monomeric inhibition. These heterodimeric tryptase inhibitors demonstrate the power of target-driven combinatorial chemistry to deliver bivalent drugs in a small molecule form.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Douglas S Werner
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Maneesh Pingle
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States.,Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Kenneth W Foreman
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Donald E Bergstrom
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall, West Lafa-yette, Indiana 47907, United States
| | - Lee D Arnold
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| |
Collapse
|
7
|
Bruno A, Costantino G, Sartori L, Radi M. The In Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization. Curr Med Chem 2019; 26:3838-3873. [PMID: 29110597 DOI: 10.2174/0929867324666171107101035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Discovery and development of a new drug is a long lasting and expensive journey that takes around 20 years from starting idea to approval and marketing of new medication. Despite R&D expenditures have been constantly increasing in the last few years, the number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. To cope with this issue, a number of in silico techniques are currently being used for an early stage evaluation/prediction of potential safety issues, allowing to increase the drug-discovery success rate and reduce costs associated with the development of a new drug. METHODS In the present review, we will analyse the early steps of the drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. RESULTS A comprehensive list of widely used in silico tools, databases, and public initiatives that can be effectively implemented and used in the drug discovery pipeline has been provided. A few examples of how these tools can be problem-solving and how they may increase the success rate of a drug discovery and development program have been also provided. Finally, selected examples where the application of in silico tools had effectively contributed to the development of marketed drugs or clinical candidates will be given. CONCLUSION The in silico toolbox finds great application in every step of early drug discovery: (i) target identification and validation; (ii) hit identification; (iii) hit-to-lead; and (iv) lead optimization. Each of these steps has been described in details, providing a useful overview on the role played by in silico tools in the decision-making process to speed-up the discovery of new drugs.
Collapse
Affiliation(s)
- Agostino Bruno
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Gabriele Costantino
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Luca Sartori
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Kusakabe T, Mochida T, Ariyama T, Lee D, Ohkubo S, Takahashi K, Kato K. Pd II catalyzed ligand controlled synthesis of bis(3-furanyl)methanones and methyl 3-furancarboxylates. Org Biomol Chem 2019; 17:6860-6865. [PMID: 31268111 DOI: 10.1039/c9ob01189g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The PdII catalyzed carbonylation of allenyl ketones has been investigated. Carbonylative dimerization predominantly proceeded to afford bis(3-furanyl)methanones 2 as the major products. The use of DMSO strikingly changed the course of the reaction, affording methyl 3-furancarboxylates 3 as the major products. DFT calculations revealed that DMSO stabilized the methanol-coordinated intermediate, leading to methoxycarbonylation. Substituted furans 2 and 3 were selectively synthesized from the same allenyl ketone substrate.
Collapse
Affiliation(s)
- Taichi Kusakabe
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Tomoyuki Mochida
- Department of Chemistry, Faculty of Sciences, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tomohiro Ariyama
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Dong Lee
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Shin Ohkubo
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
9
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
An integrated molecular modeling approach for the tryptase monomer-curcuminoid recognition analysis: conformational and bioenergetic features. J Bioenerg Biomembr 2018; 50:447-459. [PMID: 30415460 DOI: 10.1007/s10863-018-9777-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Human mast cell tryptase has been shown as an activating enzyme in matrix degradation process. The previous study suggest that tryptase either alone or in joining with activation of metalloproteinases, can associate in extra cellular matrix damage and the possible destruction of the basement membrane resulting in photoaging. Therefore the inhibition of tryptase activity is one of the most important therapeutic strategies against the photoaging. Curcumin has been shown to be a potential agent for preventing and/or treating the photoaging induced by UV radiation. However, the protective effect of curcumin against the photoaging through the tryptase inhibition is still inadequately understood. In this work, computational methods to characterize the structural framework and define the atomistic details of the determinants for the tryptase inhibition mechanism by curcuminoids were performed. By molecular docking, three putative binding models able to efficiently bind all curcuminoids were identified. Analysis of molecular dynamics simulations revealed that cyclocurcumin, curcumin glucuronide, and curcumin, the most effective inhibitors from the three models, modified significant tryptase monomer rigidity by binding in all the possible sites. The result of these binding events is the suppression of the functional enzymatic motions involving the binding of substrates to the catalytic site. On the basis of this finding may thus be beneficial for the development of new natural inhibitors for the therapeutic remedy of photoaging, targeting and modulating the activity of tryptase.
Collapse
|
11
|
Abstract
INTRODUCTION Tryptase is one of the main serine-proteinases located in the secretory granules of mast cells, and is released through degranulation, which is involved in the pathogenesis of allergic inflammatory disease, cardiovascular diseases, lung fibrosis and tumor. Therefore, inhibitors targeting tryptase may represent a new direction for the treatment of allergic inflammatory disease and other diseases. Areas covered: In this article, we discussed the history and development of tryptase inhibitors and described a variety of tryptase inhibitors via their structures and biological importance in clinical studies and drug development for tryptase-related diseases. Expert opinion: Initial tryptase inhibitors based on indole structure as the hydrophobic substituent on a benzylamine-piperidine template have low specificity and poor bioavailability. Therefore, designing new and specific inhibitors targeting tryptase should be involved in future clinical studies. Modifications toward indoles with varying N-substitution, introducing an amide bond, and growing the chain length contribute to an increase in the specific selectivity and potency of tryptase inhibitors. Tryptase has become the research hotspot to explore many related diseases. Therefore, there has been growing appreciation for the potential importance of the tryptase inhibitors as a target for treating these diseases.
Collapse
Affiliation(s)
- Wei-Wei Ni
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Meng-Da Cao
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Wen Huang
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ling Meng
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ji-Fu Wei
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| |
Collapse
|
12
|
Kuhn B, Guba W, Hert J, Banner D, Bissantz C, Ceccarelli S, Haap W, Körner M, Kuglstatter A, Lerner C, Mattei P, Neidhart W, Pinard E, Rudolph MG, Schulz-Gasch T, Woltering T, Stahl M. A Real-World Perspective on Molecular Design. J Med Chem 2016; 59:4087-102. [PMID: 26878596 DOI: 10.1021/acs.jmedchem.5b01875] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a series of small molecule drug discovery case studies where computational methods were prospectively employed to impact Roche research projects, with the aim of highlighting those methods that provide real added value. Our brief accounts encompass a broad range of methods and techniques applied to a variety of enzymes and receptors. Most of these are based on judicious application of knowledge about molecular conformations and interactions: filling of lipophilic pockets to gain affinity or selectivity, addition of polar substituents, scaffold hopping, transfer of SAR, conformation analysis, and molecular overlays. A case study of sequence-driven focused screening is presented to illustrate how appropriate preprocessing of information enables effective exploitation of prior knowledge. We conclude that qualitative statements enabling chemists to focus on promising regions of chemical space are often more impactful than quantitative prediction.
Collapse
Affiliation(s)
- Bernd Kuhn
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Wolfgang Guba
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jérôme Hert
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Caterina Bissantz
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Simona Ceccarelli
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias Körner
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christian Lerner
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrizio Mattei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Werner Neidhart
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Emmanuel Pinard
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tanja Schulz-Gasch
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Thomas Woltering
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Stahl
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Marzo L, Pérez I, Yuste F, Alemán J, García Ruano JL. A straightforward alkynylation of Li and Mg metalated heterocycles with sulfonylacetylenes. Chem Commun (Camb) 2015; 51:346-9. [DOI: 10.1039/c4cc07574a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coupling of alkynyl moieties to heterocyclic rings, without using transition metals, can be easily performed by the reaction of aryl or heteroaryl sulfonylacetylenes with heteroaryl-Li compounds or their corresponding less reactive magnesium derivatives.
Collapse
Affiliation(s)
- Leyre Marzo
- Departamento de Química Orgánica (Módulo 1)
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco
- 28049-Madrid
| | - Ignacio Pérez
- Departamento de Química Orgánica (Módulo 1)
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco
- 28049-Madrid
| | - Francisco Yuste
- Departamento de Química Orgánica (Módulo 1)
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco
- 28049-Madrid
| | - José Alemán
- Departamento de Química Orgánica (Módulo 1)
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco
- 28049-Madrid
| | - José Luis García Ruano
- Departamento de Química Orgánica (Módulo 1)
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- Cantoblanco
- 28049-Madrid
| |
Collapse
|
14
|
He Y, Zhang X, Fan X. Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations. Chem Commun (Camb) 2015; 51:16263-6. [PMID: 26399394 DOI: 10.1039/c5cc06150d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel synthesis of diversely substituted 2-(furan-3-yl)acetatesviapalladium-catalyzed one-pot multi-component reactions of allenols, aryl iodides, alcohols, and carbon monoxide has been developed. Moreover, the 2-(furan-3-yl)acetates obtained were found to be ready intermediates for the construction of the biologically significant naphtho[1,2-b]furan-5-ol scaffold.
Collapse
Affiliation(s)
- Yan He
- School of Environment
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xinying Zhang
- School of Environment
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xuesen Fan
- School of Environment
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| |
Collapse
|
15
|
Jiang QQ, Sicking W, Ehlers M, Schmuck C. Discovery of potent inhibitors of human β-tryptase from pre-equilibrated dynamic combinatorial libraries. Chem Sci 2014; 6:1792-1800. [PMID: 29163876 PMCID: PMC5644118 DOI: 10.1039/c4sc02943g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023] Open
Abstract
Pre-equilibrated combinatorial libraries based on multivalent peptide acyl hydrazones were used to find potent inhibitors of β-tryptase. The best inhibitors bind to the protein surface, and inhibit β-tryptase with nanomolar affinity (Kica. 10 nM) and high selectivity in a reversible and non-competitive way.
Pre-equilibrated dynamic combinatorial libraries based on acyl hydrazone interchange of peptide-derived hydrazides and di- and tri-aldehydes have been used to discover potent inhibitors with nanomolar affinities for β-tryptase. To identify potent inhibitors the activity of the full library containing 95 members was compared with those of sub-libraries in which individual building blocks were missing. The most active library members contain a rigid central aromatic scaffold with three cationic peptide arms. The arms of the best inhibitors also contained a tailor-made GCP oxoanion binding motif attached to a lysine side chain. The most potent tri-armed hydrazones with peptide arms GKWR or GKWK(GCP) were shown to inhibit β-tryptase (Kica. 10–20 nM) reversibly, non-competitively and selectively (compared to related serine proteases, e.g. trypsin and chymotrypsin), most likely by binding to the protein surface, also in agreement with molecular modelling calculations. These new inhibitors are one order of magnitude more efficient than related tetravalent inhibitors obtained from previous work on a split-mix-combinatorial library and were identified with significantly less effort, demonstrating the usefulness of this approach for the identification of enzyme inhibitors in general.
Collapse
Affiliation(s)
- Qian-Qian Jiang
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Wilhelm Sicking
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Martin Ehlers
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Carsten Schmuck
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| |
Collapse
|
16
|
Li Y, Brand JP, Waser J. Gold-Catalyzed Regioselective Synthesis of 2- and 3-Alkynyl Furans. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302210] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Li Y, Brand JP, Waser J. Gold-Catalyzed Regioselective Synthesis of 2- and 3-Alkynyl Furans. Angew Chem Int Ed Engl 2013; 52:6743-7. [DOI: 10.1002/anie.201302210] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/04/2013] [Indexed: 12/28/2022]
|