1
|
Cao W, Yu P, Yang S, Li Z, Zhang Q, Liu Z, Li H. Discovery of Novel Mono-Carbonyl Curcumin Derivatives as Potential Anti-Hepatoma Agents. Molecules 2023; 28:6796. [PMID: 37836639 PMCID: PMC10574324 DOI: 10.3390/molecules28196796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Curcumin possesses a wide spectrum of liver cancer inhibition effects, yet it has chemical instability and poor metabolic properties as a drug candidate. To alleviate these problems, a series of new mono-carbonyl curcumin derivatives G1-G7 were designed, synthesized, and evaluated by in vitro and in vivo studies. Compound G2 was found to be the most potent derivative (IC50 = 15.39 μM) compared to curcumin (IC50 = 40.56 μM) by anti-proliferation assay. Subsequently, molecular docking, wound healing, transwell, JC-1 staining, and Western blotting experiments were performed, and it was found that compound G2 could suppress cell migration and induce cell apoptosis by inhibiting the phosphorylation of AKT and affecting the expression of apoptosis-related proteins. Moreover, the HepG2 cell xenograft model and H&E staining results confirmed that compound G2 was more effective than curcumin in inhibiting tumor growth. Hence, G2 is a promising leading compound with the potential to be developed as a chemotherapy agent for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weiya Cao
- College of Public Health, Anhui University of Science and Technology, Hefei 230000, China;
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Pan Yu
- College of Public Health, Anhui University of Science and Technology, Hefei 230000, China;
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Shilong Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Zheyu Li
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Qixuan Zhang
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Zengge Liu
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Hongzhuo Li
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| |
Collapse
|
2
|
Synthesis and biological testing of 3,5-bis(arylidene)-4-piperidone conjugates with 2,5-dihydro-5H-1,2-oxaphospholenes. Bioorg Med Chem Lett 2022; 74:128940. [PMID: 35964843 DOI: 10.1016/j.bmcl.2022.128940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Using the methodology of "click" chemistry, a series of conjugates of 3,5-bis(benzylidene)-1-(prop-2-yn)piperidin-4-ones with 4-alkyl-3-azidomethyl-2-ethoxy-2,5-dihydro-5H-1,2 oxaphosphol 2-oxides was synthesized. All newly obtained compounds 8-18 were characterized by 1H, 13C, 31P, 19F NMR and IR spectroscopy. The potential antitumor activity of the synthesized conjugates8-18was studied in terms of their ability to influence the viability of variouscancercell lines, including A549, SH-SY5Y, Hep-2, and HeLa. Compound 15, which contains two fluorine atoms in the benzene ring, was shown to be the most promising. The mechanism of the cytotoxic action of this conjugate is supposed to be associated with the ability to inhibit the glycolytic profile of transformed cells.
Collapse
|
3
|
Sidat PS, Jaber TMK, Vekariya SR, Mogal AM, Patel AM, Noolvi M. Anticancer Biological Profile of Some Heterocylic Moieties-Thiadiazole, Benzimidazole, Quinazoline, and Pyrimidine. PHARMACOPHORE 2022. [DOI: 10.51847/rt6ve6gesu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Subhedar DD, Shaikh MH, Nagargoje AA, Sarkar D, Khedkar VM, Shingate BB. [DBUH][OAc]-Catalyzed Domino Synthesis of Novel Benzimidazole Incorporated 3,5-Bis (Arylidene)-4-Piperidones as Potential Antitubercular Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1995008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dnyaneshwar D. Subhedar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Mubarak H. Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Amol A. Nagargoje
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Dhiman Sarkar
- Combichem Bioresource Centre, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Vijay M. Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents. Molecules 2019; 24:molecules24183259. [PMID: 31500191 PMCID: PMC6767017 DOI: 10.3390/molecules24183259] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Numerous reports have shown that conjugated benzimidazole derivatives possess various kinds of biological activities, including anticancer properties. In this report, we designed and synthesized 24 new molecules comprising a benzimidazole ring, arene, and alkyl chain-bearing cyclic moieties. The results showed that the N-substituted benzimidazole derivatives bearing an alkyl chain and a nitrogen-containing 5- or 6-membered ring enhanced the cytotoxic effects on human breast adenocarcinoma (MCF-7) and human ovarian carcinoma (OVCAR-3) cell lines. Among the 24 synthesized compounds, (2E)-1-(1-(3-morpholinopropyl)-1H-benzimidazol-2 -yl)-3-phenyl-2-propen-1-one) (23a) reduced the proliferation of MCF-7 and OVCAR-3 cell lines demonstrating superior outcomes to those of cisplatin.
Collapse
|
6
|
Ryabukhin DS, Turdakov AN, Soldatova NS, Kompanets MO, Ivanov AY, Boyarskaya IA, Vasilyev AV. Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF 3SO 3H. NMR and DFT studies of dicationic electrophilic species. Beilstein J Org Chem 2019; 15:1962-1973. [PMID: 31501662 PMCID: PMC6720581 DOI: 10.3762/bjoc.15.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkylbenzimidazoles with arenes in the Brønsted superacid TfOH resulted in the formation of the corresponding Friedel-Crafts reaction products, 2-diarylmethyl and 2-arylmethyl-substituted benzimidazoles, in yields up to 90%. The reaction intermediates, protonated species derived from starting benzimidazoles in TfOH, were thoroughly studied by means of NMR and DFT calculations and plausible reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Dmitry S Ryabukhin
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russian Federation
| | - Alexey N Turdakov
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russian Federation
| | - Natalia S Soldatova
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation
| | - Mikhail O Kompanets
- Litvinenko Institute of Physico-Organic and Coal Chemistry, NAS of Ukraine, Kharkivske Hgw, 50, Kyiv, 02160, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prosp. Peremohy, 37, Kyiv, 03056, Ukraine
| | - Alexander Yu Ivanov
- Center for Magnetic Resonance, Research Park, Saint Petersburg State University, Universitetskiy pr., 26, Saint Petersburg, Petrodvoretz, 198504, Russian Federation
| | - Irina A Boyarskaya
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russian Federation
| | - Aleksander V Vasilyev
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russian Federation
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russian Federation
| |
Collapse
|
7
|
Benhassine A, Boulebd H, Anak B, Bouraiou A, Bouacida S, Bencharif M, Belfaitah A. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Hsu MH, Hsu SM, Kuo YC, Liu CY, Hsieh CY, Twu YC, Wang CK, Wang YH, Liao YJ. Treatment with low-dose sorafenib in combination with a novel benzimidazole derivative bearing a pyrolidine side chain provides synergistic anti-proliferative effects against human liver cancer. RSC Adv 2017. [DOI: 10.1039/c6ra28281d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and deadliest cancers in the world.
Collapse
Affiliation(s)
- Ming-Hua Hsu
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences
- National Yang-Ming University
- Taipei
- Taiwan
| | - Yu-Cheng Kuo
- Radiation Oncology
- Show Chwan Memorial Hospital
- Changhua
- Taiwan
| | - Chih-Yu Liu
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| | - Cheng-Ying Hsieh
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu
- Taiwan
- Department of Chemistry
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine
- School of Biomedical Science and Engineering
- National Yang-Ming University
- 11221 Taipei
- Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine
- Taipei City Hospital Ranai Branch
- Taipei
- Taiwan
| | - Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| |
Collapse
|
9
|
Ajani OO, Aderohunmu DV, Ikpo CO, Adedapo AE, Olanrewaju IO. Functionalized Benzimidazole Scaffolds: Privileged Heterocycle for Drug Design in Therapeutic Medicine. Arch Pharm (Weinheim) 2016; 349:475-506. [PMID: 27213292 DOI: 10.1002/ardp.201500464] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
Benzimidazole derivatives are crucial structural scaffolds found in diverse libraries of biologically active compounds which are therapeutically useful agents in drug discovery and medicinal research. They are structural isosteres of naturally occurring nucleotides, which allows them to interact with the biopolymers of living systems. Hence, there is a need to couple the latest information with the earlier documentations to understand the current status of the benzimidazole nucleus in medicinal chemistry research. This present work unveils the benzimidazole core as a multifunctional nucleus that serves as a resourceful tool of information for synthetic modifications of old existing candidates in order to tackle drug resistance bottlenecks in therapeutic medicine. This manuscript deals with the recent advances in the synthesis of benzimidazole derivatives, the widespread biological activities as well as pharmacokinetic reports. These present them as a toolbox for fighting infectious diseases and also make them excellent candidates for future drug design.
Collapse
Affiliation(s)
- Olayinka O Ajani
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | - Damilola V Aderohunmu
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | - Chinwe O Ikpo
- Department of Chemistry, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Adebusayo E Adedapo
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | | |
Collapse
|
10
|
Synthesis and biological evaluation of heterocyclic privileged medicinal structures containing (benz)imidazole unit. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1733-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Hampannavar GA, Karpoormath R, Palkar MB, Shaikh MS. An appraisal on recent medicinal perspective of curcumin degradant: Dehydrozingerone (DZG). Bioorg Med Chem 2016; 24:501-20. [PMID: 26796952 DOI: 10.1016/j.bmc.2015.12.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Natural products serve as a key source for the design, discovery and development of potentially novel drug like candidates for life threatening diseases. Curcumin is one such medicinally important molecule reported for an array of biological activities. However, it has major drawbacks of very poor bioavailability and solubility. Alternatively, structural analogs and degradants of curcumin have been investigated, which have emerged as promising scaffolds with diverse biological activities. Dehydrozingerone (DZG) also known as feruloylmethane, is one such recognized degradant which is a half structural analog of curcumin. It exists as a natural phenolic compound obtained from rhizomes of Zingiber officinale, which has attracted much attention of medicinal chemists. DZG is known to have a broad range of biological activities like antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-malarial, antifungal, anti-platelet and many others. DZG has also been studied in resolving issues pertaining to curcumin since it shares many structural similarities with curcumin. Considering this, in the present review we have put forward an effort to revise and systematically discuss the research involving DZG with its biological diversity. From literature, it is quite clear that DZG and its structural analogs have exhibited significant potential in facilitating design and development of novel medicinally active lead compounds with improved metabolic and pharmacokinetic profiles.
Collapse
Affiliation(s)
- Girish A Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; Department of Pharmaceutical Chemistry, K.L.E. University College of Pharmacy, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Mahamadhanif S Shaikh
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
12
|
Park CB, Ahn CM, Oh S, Kwon D, Cho WC, Shin WS, Cui Y, Um YS, Park BG, Lee S. Synthesis of alkylsulfonyl and substituted benzenesulfonyl curcumin mimics as dual antagonist of L-type Ca(2+) channel and endothelin A/B2 receptor. Bioorg Med Chem 2015; 23:6673-82. [PMID: 26386817 DOI: 10.1016/j.bmc.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/01/2022]
Abstract
We synthesized a library of curcumin mimics with diverse alkylsulfonyl and substituted benzenesulfonyl modifications through a simple addition reaction of important intermediate, 1-(3-Amino-phenyl)-3-(4-hydroxy-3-methoxy-phenyl)-propenone (10), with various sulfonyl chloride reactants and then tested their vasodilatation effect on depolarization (50 mM K(+))- and endothelin-1 (ET-1)-induced basilar artery contraction. Generally, curcumin mimics with aromatic sulfonyl groups showed stronger vasodilation effect than alkyl sulfonylated curcumin mimics. Among the tested compounds, six curcumin mimics (11g, 11h, 11i, 11j, 11l, and 11s) in a depolarization-induced vasoconstriction and seven compounds (11g, 11h, 11i, 11j, 11l, 11p, and 11s) in an ET-1-induced vasoconstriction showed strong vasodilation effect. Based on their biological properties, synthetic curcumin mimics can act as dual antagonist scaffold of L-type Ca(2+) channel and endothelin A/B2 receptor in vascular smooth muscle cells. In particular, compounds 11g and 11s are promising novel drug candidates to treat hypertension related to the overexpression of L-type Ca(2+) channels and ET peptides/receptors-mediated cardiovascular diseases.
Collapse
Affiliation(s)
- Chong-Bin Park
- Department of Thoracic and Cardiovascular Surgery, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung 210-711, Republic of Korea
| | - Chan Mug Ahn
- Department of Basic Science, Yonsei University Wonju College of Medicine, Wonju 220-701, Republic of Korea
| | - Sangtae Oh
- Department of Basic Science, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Daeho Kwon
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Won-Chul Cho
- Department of Thoracic and Cardiovascular Surgery, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung 210-711, Republic of Korea
| | - Woon-Seob Shin
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Yuan Cui
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Ye Sol Um
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | - Byong-Gon Park
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea.
| | - Seokjoon Lee
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea; Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea.
| |
Collapse
|
13
|
Wang R, Chen C, Zhang X, Zhang C, Zhong Q, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents. J Med Chem 2015; 58:4713-26. [PMID: 25961334 DOI: 10.1021/acs.jmedchem.5b00470] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles.
Collapse
Affiliation(s)
- Rubing Wang
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | - Chengsheng Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | - Xiaojie Zhang
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | | | | | - Guanglin Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | | | | | | | - Qiao-Hong Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| |
Collapse
|
14
|
Synthesis of diethylamino-curcumin mimics with substituted triazolyl groups and their sensitization effect of TRAIL against brain cancer cells. Bioorg Med Chem Lett 2014; 24:3346-50. [DOI: 10.1016/j.bmcl.2014.05.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022]
|
15
|
Bairwa K, Grover J, Kania M, Jachak SM. Recent developments in chemistry and biology of curcumin analogues. RSC Adv 2014. [DOI: 10.1039/c4ra00227j] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Kamal A, Ponnampalli S, Vishnuvardhan MVPS, Rao MPN, Mullagiri K, Nayak VL, Chandrakant B. Synthesis of imidazothiadiazole–benzimidazole conjugates as mitochondrial apoptosis inducers. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00219a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of imidazothiadiazole–benzimidazole conjugates (3a–z) were synthesized and evaluated for their cytotoxic activity against a set of four selected human cancer cell lines. Compounds3band3yexhibited significant antiproliferative activity against the ME-180 (cervical) cell line.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - Swapna Ponnampalli
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - M. V. P. S. Vishnuvardhan
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - M. P. Narasimha Rao
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - Kishore Mullagiri
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007, India
| | - Bagul Chandrakant
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad 500037, India
| |
Collapse
|
17
|
Eom YW, Woo HB, Ahn CM, Lee S. Synthesis of Curcumin Mimics Library with α,β-Unsaturated Carbonyl Aromatic Group and their Inhibitory Effect against Adipocyte Differentiation of 3T3-L1. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Eom YW, Oh S, Woo HB, Ham J, Ahn CM, Lee S. Cytotoxicity of Substituted Benzimidazolyl Curcumin Mimics Against Multi-Drug Resistance Cancer Cell. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Cridge BJ, Larsen L, Rosengren RJ. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-6199-1-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur J Med Chem 2012; 57:29-40. [PMID: 23043766 DOI: 10.1016/j.ejmech.2012.08.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/23/2022]
Abstract
Novel quinoline-2-one based chalcones were synthesized from a Claisen-Schmidt condensation by using the couple KOH/1,4-dioxane as reaction medium. A relatively stable aldol was isolated and identified as the intermediate species in the formation of the target chalcones. Nine of the obtained compounds were in vitro screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines. Products 16c, 16d, 16h and 27 exhibited the highest activity, being compound 27 the most active, displaying remarkable activity against 50 human tumor cell lines, thirteen of them with GI(50) values ≤1.0 μM, being the HCT-116 (Colon, GI(50) = 0.131 μM) and LOX IMVI (Melanoma, GI(50) = 0.134 μM) the most sensitive strains. Compound 27 was referred to in vivo acute toxicity and hollow fiber assay by the Biological Evaluation Committee of the NCI. The acute toxicity study indicated that compound 27 was well tolerated intraperitoneally (150 mg/kg/dose) by athymic nude mice. This compound may possibly be used as lead compound for developing new anticancer agents.
Collapse
|