1
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Zorn A, Baillie G. Phosphodiesterase 7 as a therapeutic target - Where are we now? Cell Signal 2023; 108:110689. [PMID: 37120115 DOI: 10.1016/j.cellsig.2023.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyse the intracellular second messengers cAMP and cGMP to their inactive forms 5'AMP and 5'GMP. Some members of the PDE family display specificity towards a single cyclic nucleotide messenger, and PDE4, PDE7, and PDE8 specifically hydrolyse cAMP. While the role of PDE4 and its use as a therapeutic target have been well studied, less is known about PDE7 and PDE8. This review aims to collate the present knowledge on human PDE7 and outline its potential use as a therapeutic target. Human PDE7 exists as two isoforms PDE7A and PDE7B that display different expression patterns but are predominantly found in the central nervous system, immune cells, and lymphoid tissue. As a result, PDE7 is thought to play a role in T cell activation and proliferation, inflammation, and regulate several physiological processes in the central nervous system, such as neurogenesis, synaptogenesis, and long-term memory formation. Increased expression and activity of PDE7 has been detected in several disease states, including neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's disease, autoimmune diseases such as multiple sclerosis and COPD, and several types of cancer. Early studies have shown that administration of PDE7 inhibitors may ameliorate the clinical state of these diseases. Targeting PDE7 may therefore provide a novel therapeutic strategy for targeting a broad range of disease and possibly provide a complementary alternative to inhibitors of other cAMP-selective PDEs, such as PDE4, which are severely limited by their side-effects.
Collapse
Affiliation(s)
- Alina Zorn
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| | - George Baillie
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| |
Collapse
|
3
|
Huang JX, Zhu BL, Xu JP, Zhou ZZ. Advances in the development of phosphodiesterase 7 inhibitors. Eur J Med Chem 2023; 250:115194. [PMID: 36796299 DOI: 10.1016/j.ejmech.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 7 (PDE7) specifically hydrolyzes cyclic adenosine monophosphate (cAMP), a second messenger that plays essential roles in cell signaling and physiological processes. Many PDE7 inhibitors used to investigate the role of PDE7 have displayed efficacy in the treatment of a wide range of diseases, such as asthma and central nervous system (CNS) disorders. Although PDE7 inhibitors are developed more slowly than PDE4 inhibitors, there is increasing recognition of PDE7 inhibitors as potential therapeutics for no nausea and vomiting secondary. Herein, we summarized the advances in PDE7 inhibitors over the past decade, focusing on their crystal structures, key pharmacophores, subfamily selectivity, and therapeutic potential. Hopefully, this summary will lead to a better understanding of PDE7 inhibitors and provide strategies for developing novel therapies targeting PDE7.
Collapse
Affiliation(s)
- Jia-Xi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Lin Zhu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Wang Y, Liu J, Song G, Yu Y, Huang X. Design and Synthesis of PDE2A Inhibitors for the Treatment of Parkinson's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202202874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yajing Wang
- School of Pharmacy &School of Medicine Changzhou University, Changzhou Jiangsu 213164 PR China
| | - Jie Liu
- School of Pharmacy &School of Medicine Changzhou University, Changzhou Jiangsu 213164 PR China
| | - Guoqiang Song
- School of Pharmacy &School of Medicine Changzhou University, Changzhou Jiangsu 213164 PR China
| | - Yingcong Yu
- Wenzhou People's Hospital Clinical Institute Affiliated to Wenzhou Medical University Wenzhou PR China
| | - Xianfeng Huang
- School of Pharmacy &School of Medicine Changzhou University, Changzhou Jiangsu 213164 PR China
| |
Collapse
|
5
|
Phosphodiesterase 7(PDE7): A unique drug target for central nervous system diseases. Neuropharmacology 2021; 196:108694. [PMID: 34245775 DOI: 10.1016/j.neuropharm.2021.108694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase 7 (PDE7), one of the 11 phosphodiesterase (PDE) families, specifically hydrolyzes cyclic 3', 5'-adenosine monophosphate (cAMP). PDE7 is involved in many important functional processes in physiology and pathology by regulating intracellular cAMP signaling. Studies have demonstrated that PDE7 is widely expressed in the central nervous system (CNS) and potentially related to pathogenesis of many CNS diseases. Here, we summarized the classification and distribution of PDE7 in the brain and its functional roles in the mediation of CNS diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and schizophrenia. It is expected that the findings collected here will not only lead to a better understanding of the mechanisms by which PDE7 mediates CNS function and diseases, but also aid in the development of novel drugs targeting PDE7 for treatment of CNS diseases.
Collapse
|
6
|
Lebrêne A, Martzel T, Gouriou L, Sanselme M, Levacher V, Oudeyer S, Afonso C, Loutelier-Bourhis C, Brière JF. The Catalytic Regio- and Stereoselective Synthesis of 1,6-Diazabicyclo[4.3.0]nonane-2,7-diones. J Org Chem 2021; 86:8600-8609. [PMID: 34125536 DOI: 10.1021/acs.joc.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A straightforward synthesis of original 1,6-diazabicyclo[4.3.0]nonane-2,7-diones was achieved through a DBU-organocatalyzed multicomponent Knoevenagel-aza-Michael-Cyclocondensation reaction which takes advantage of an unprecedented highly regio- and diastereoselective conjugate addition of pyridazinones to alkylidene Meldrum's acid intermediates. The key reactive intermediates of this complex process were analyzed by means of electrospray ionization mass spectrometry coupled to ion mobility spectrometry, allowing us to validate the proposed mechanism.
Collapse
Affiliation(s)
- Arthur Lebrêne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Thomas Martzel
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Laura Gouriou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Morgane Sanselme
- Laboratoire SMS - EA3233, Normandie Univ-University of Rouen, 76821 Mont Saint Aignan, France
| | - Vincent Levacher
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Sylvain Oudeyer
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | | |
Collapse
|
7
|
Jankowska A, Pawłowski M, Chłoń-Rzepa G. Diabetic Theory in Anti-Alzheimer's Drug Research and Development. Part 2: Therapeutic Potential of cAMP-Specific Phosphodiesterase Inhibitors. Curr Med Chem 2021; 28:3535-3553. [PMID: 32940168 DOI: 10.2174/0929867327666200917125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3',5'-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| |
Collapse
|
8
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
9
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Abstract
Azolo[d]pyridazinone is a privileged structure and versatile pharmacophore whose derivatives are associated with diverse biological activities, in particular antidiabetic, antiasthmatic, anticancer, analgesic, anti-inflammatory, antithrombotic, antidepressant and antimicrobial activities. The importance of this scaffold against some targets like PDE, COX and DPP-4 has been reviewed in detail previously. In the present review, we have summarized comprehensive information on azolo[d]pyridazinone derivatives investigated by many researchers for their diverse pharmacological activities, structure-activity relationship and molecular modeling studies since 2000. The review may lead scientists in the research fields of organic synthesis, medicinal chemistry and pharmacology to the strategic design and development of azolo[d]pyridazinone-based drug candidates in the future.
Collapse
|
11
|
Pharmacological inhibition of phosphodiesterase 7 enhances consolidation processes of spatial memory. Neurobiol Learn Mem 2020; 177:107357. [PMID: 33278592 DOI: 10.1016/j.nlm.2020.107357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Augmentation of cAMP signaling through inhibition of phosphodiesterases (PDE) is known to enhance plasticity and memory. Inhibition of PDE4 enhances consolidation into memory, but less is known about the role of other cAMP specific PDEs. Here, we tested the effects of oral treatment with a selective inhibitor of PDE7 of nanomolar potency on spatial and contextual memory. In an object location task, doses of 0.3-3 mg/kg administered 3 h after training dose-dependently attenuated time-dependent forgetting in rats. Significant enhancement of memory occurred at a dose of 3 mg/kg with corresponding brain levels consistent with PDE7 inhibition. The same dose given prior to training augmented contextual fear conditioning. In mice, daily dosing before training enhanced spatial memory in two different incremental learning paradigms in the Barnes Maze. Drug treated mice made significantly less errors locating the escape in a probe-test 24 h after the end of training, and they exhibited hippocampal-dependent spatial search strategies more frequently than controls, which tended to show serial sampling of escape locations. Acquisition and short-term memory, in contrast, were unaffected. Our data provide evidence for a role of PDE7 in the consolidation of hippocampal-dependent memory. We suggest that targeting PDE7 for memory enhancement may provide an alternative to PDE4 inhibitors, which tend to have undesirable gastrointestinal side-effects.
Collapse
|
12
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Rane P, Sarmah D, Bhute S, Kaur H, Goswami A, Kalia K, Borah A, Dave KR, Sharma N, Bhattacharya P. Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chem Neurosci 2019; 10:44-57. [PMID: 29957921 DOI: 10.1021/acschemneuro.8b00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is pathologically characterized by degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc). PD leads to clinical motor features that include rigidity, tremor, and bradykinesia. Despite multiple available therapies for PD, the clinical features continue to progress, and patients suffer progressive disability. Many advances have been made in PD therapy which directly target the cause of the disease rather than providing symptomatic relief. A neuroprotective or disease modifying strategy that can slow or cease clinical progression and worsening disability remains as a major unmet medical need for PD management. The present review discusses potential novel therapies for PD that include recent interventions in the form of immunomodulatory techniques and stem cell therapy. Further, an introspective approach to identify numerous other novel targets that can alleviate PD pathogenesis and enable physicians to practice multitargeted therapy and that may provide a ray of hope to PD patients in the future are discussed.
Collapse
Affiliation(s)
- Pallavi Rane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Shashikala Bhute
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
14
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
15
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Chłoń-Rzepa G, Jankowska A, Ślusarczyk M, Świerczek A, Pociecha K, Wyska E, Bucki A, Gawalska A, Kołaczkowski M, Pawłowski M. Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 146:381-394. [PMID: 29407965 DOI: 10.1016/j.ejmech.2018.01.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
A novel butanehydrazide derivatives of purine-2,6-dione designed using a ligand-based approach were synthesized and their in vitro activity against both PDE4B and PDE7A isoenzymes was assessed. The 7,8-disubstituted purine-2,6-dione derivatives 31, 34, 37, and 40 appeared to be the most potent PDE4/7 inhibitors with IC50 values in the range of that of the reference rolipram and BRL-50481, respectively. Moreover, docking studies explained the importance of N-(2,3,4-trihydroxybenzylidene)butanehydrazide substituent in position 7 of purine-2,6-dione core for dual PDE4/7 inhibitory properties. The inhibition of both the cAMP-specific PDE isoenzymes resulted in a strong anti-TNF-α effect. Compounds 31, 34, and 37 in the in vivo study in rats with LPS-induced endotoxemia decreased the maximum concentration of this proinflammatory cytokine by 53, 84 and 88%, respectively.
Collapse
Affiliation(s)
- Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marietta Ślusarczyk
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
17
|
Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Mol Neurobiol 2017; 55:822-834. [PMID: 28062949 DOI: 10.1007/s12035-016-0355-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) has no known cure; available therapies are only capable of offering temporary, symptomatic relief to the patients. Varied therapeutic strategies that are clinically used for PD are pharmacological therapies including dopamine replacement therapies (with or without adjuvant), postsynaptic dopamine receptor stimulation, dopamine catabolism inhibitors and also anticholinergics. Surgical therapies like deep brain stimulation and ablative surgical techniques are also employed. Phosphodiesterases (PDEs) are enzymes that degrade the phosphodiester bond in the second messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). A number of PDE families are highly expressed in the striatum including PDE1-4, PDE7, PDE9 and PDE10. There are growing evidences to suggest that these enzymes play a critical role in modulating cAMP-mediated dopamine signalling at the postsynaptic region. Therefore, it is clear that PDEs, given the broad range of subtypes and their varied tissue- and region-specific distributions, will be able to provide a range of possibilities as drug targets. There is no phosphodiesterase inhibitor currently approved for use against PD. The development of small molecule inhibitors against cyclic nucleotide PDE is a particularly hot area of investigation, and a lot of research and development is geared in this direction with major players in the pharmaceutical industry investing heavily in developing such potential drug entities. This review, while critically assessing the existing body of literature on brain PDEs with particular interest in the striatum in the context of motor function regulation, indicates it is certainly likely that PDE inhibitors could be developed as therapeutic agents against PD.
Collapse
|
18
|
Heckman PRA, Blokland A, Prickaerts J. From Age-Related Cognitive Decline to Alzheimer's Disease: A Translational Overview of the Potential Role for Phosphodiesterases. ADVANCES IN NEUROBIOLOGY 2017; 17:135-168. [PMID: 28956332 DOI: 10.1007/978-3-319-58811-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer's disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24:1419-30. [DOI: 10.1016/j.bmc.2016.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
|
20
|
Mao JH, Wang ZT, Wang ZY, Cheng Y. N-Heterocyclic Carbene-Catalyzed Oxidative Annulations of α,β-Unsaturated Aldehydes with Hydrazones: Selective Synthesis of Optically Active 4,5-Dihydropyridazin-3-ones and Pyridazin-3-ones. J Org Chem 2015; 80:6350-9. [PMID: 26019007 DOI: 10.1021/acs.joc.5b00784] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and efficient method for the highly enantioselective synthesis of chiral 4,5-dihydropyridazin-3-one derivatives has been developed based on the chiral N-heterocyclic carbene-catalyzed oxidative annulation between α,β-unsaturated aldehydes and hydrazones. Meanwhile, the selective synthesis of either 4,5-dihydropyridazin-3-ones or pyridazin-3-one derivatives from the same reactants has been achieved by simply varying catalytic and reaction conditions.
Collapse
Affiliation(s)
- Jian-Hui Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi-Tian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhan-Yong Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Discovery and SAR study of 2-(4-pyridylamino)thieno[3,2-d]pyrimidin-4(3H)-ones as soluble and highly potent PDE7 inhibitors. Bioorg Med Chem Lett 2015; 25:649-53. [DOI: 10.1016/j.bmcl.2014.11.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 01/23/2023]
|
22
|
Umar T, Hoda N. Selective inhibitors of phosphodiesterases: therapeutic promise for neurodegenerative disorders. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00419e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PDE inhibitors: significant contributors to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tarana Umar
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| | - Nasimul Hoda
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| |
Collapse
|
23
|
Kawai K, Endo Y, Asano T, Amano S, Sawada K, Ueo N, Takahashi N, Sonoda Y, Nagai M, Kamei N, Nagata N. Discovery of 2-(Cyclopentylamino)thieno[3,2-d]pyrimidin-4(3H)-one Derivatives as a New Series of Potent Phosphodiesterase 7 Inhibitors. J Med Chem 2014; 57:9844-54. [DOI: 10.1021/jm5008215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kentaro Kawai
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Yusuke Endo
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Takeshi Asano
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Seiji Amano
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Keisuke Sawada
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Noriko Ueo
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Nobuaki Takahashi
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Yo Sonoda
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Mika Nagai
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Noriyuki Kamei
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| | - Naoya Nagata
- Drug Research
Center, Kaken Pharmaceutical Co. Ltd., 14 Shinomiya Minamigawara-cho,
Yamashina, Kyoto 607-8042, Japan
| |
Collapse
|
24
|
Martinez A, Gil C. cAMP-specific phosphodiesterase inhibitors: promising drugs for inflammatory and neurological diseases. Expert Opin Ther Pat 2014; 24:1311-21. [PMID: 25284693 DOI: 10.1517/13543776.2014.968127] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION PDEs are key enzymes in the adenosine and guanosine cyclic nucleotides (cAMP and cGMP) signaling cascade. Their inhibition increases cyclic nucleotide levels inside the cell. Thus, pharmacological modulation of PDE activity can have profound effects on the function of cells and organ systems throughout the body. AREAS COVERED Among the large PDE families, only PDE4, PDE7 and PDE8 are cAMP-specific hydrolyzing enzymes. cAMP is an important second messenger not only by its involvement in a vast number of physiological processes but also by activation of protein kinase A, exchange protein activated by cAMP (Epac) and cAMP response element-binding (CREB) or cyclic nucleotide-gated channels. Clearly, such enzymes represent ideal drug targets for the pharmacological treatment of many pathologies. The discovery and development of small molecules targeting cAMP-specific PDEs reported in the last 5 years is the focus of the present review. EXPERT OPINION The first PDE4 inhibitors recently reached the market, having avoided, by different strategies, their dose-limiting side effects (after more than two decades of drug development). Meanwhile, new cAMP-specific PDE7 and PDE8 inhibitors emerged as effective and safe drugs for severe unmet diseases. The therapeutic potential of these inhibitors will be tested in the near future, as many of these drug candidates are ready to start clinical trials.
Collapse
Affiliation(s)
- Ana Martinez
- Centro de Investigaciones Biológicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid , Spain
| | | |
Collapse
|
25
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martinez A, Gil C. Phosphodiesterase Inhibitors as a New Therapeutic Approach for the Treatment of Parkinson’s Disease. EMERGING DRUGS AND TARGETS FOR PARKINSON’S DISEASE 2013. [DOI: 10.1039/9781849737357-00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphodiesterases (PDEs) are expressed in different brain areas including the striatum. PDEs have recently emerged as important drug targets for central nervous system disorders, including Parkinson’s disease (PD). Levels of cyclic adenosine monophosphate (cAMP) control many cellular signaling pathways and are crucial for the dopamine signal, which is disturbed in PD due to the progressive loss of dopaminergic neurons. PDEs play a key role in cAMP homeostasis, as they are the enzymes responsible for its degradation. Moreover, beyond dopamine neurotransmission, cAMP is involved in many other cellular processes, such as neuroinflammation and neuronal plasticity. This enhances the value of PDEs as promising pharmacological targets for neurological disorders. Furthermore, cAMP‐PDE inhibitors with drug profiles may be used in the near future as disease‐modifying drugs for the treatment of PD. A concise review of the main roles of cAMP‐PDEs expressed in the striatum and the potential of their inhibitors in different animal models of PD is described in this chapter.
Collapse
|
28
|
Safavi M, Baeeri M, Abdollahi M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Drug Discov 2013; 8:733-51. [DOI: 10.1517/17460441.2013.787986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|